Finding the best angle: pigeons (Columba livia) weight angular information more heavily than relative wall length in an open-field geometry task

  • 153 Accesses

  • 13 Citations


Pigeons were trained to locate food in two geometrically equivalent corners of a parallelogram-shaped enclosure. Both the angular amplitude of the corners and the length of the walls alone were sufficient for successfully completing the task. Following training, birds were tested in three separate conditions that manipulated the geometric information available. During tests in both a rectangular-shaped enclosure that preserved the wall length information but not the angular amplitude, and a rhombus-shaped enclosure that did the opposite, pigeons located their goal corners with a high degree of accuracy, indicating an ability to use both types of geometric information in isolation. This result is consistent with prior research with domestic chicks. However, in a conflict test in a reverse parallelogram-shaped enclosure, in which the correct angular location was paired with an incorrect wall length location, birds showed a preference for the correct angular location. This suggests that pigeons weight angles more heavily than wall lengths in this type of navigation task, which differs from findings in a similar task conducted with the domestic chick. Results in the conflict test also suggest that pigeons did not use the principal axis as their main strategy of small-scale navigation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Able KP (1991) Common themes and variations in animal orientation systems. Am Zool 31:157–167

  2. Brown AA, Spetch ML, Hurd PL (2007) Growing in circles, rearing environment alters spatial navigation in fish. Psychol Sci 18:569–573

  3. Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178

  4. Cheng K, Gallistel CR (2005) Shape parameters explain data from spatial transformations: comment on Pearce et al. (2004) and Tommasi and Polli (2004). J Exp Psychol Anim Behav Proc 31:254–259

  5. Cheng K, Newcombe NS (2005) Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychon Bull Rev 12:1–23

  6. Cheng K, Spetch ML (1988) Mechanisms of landmark use in mammals and birds. In: Healy S (ed) Spatial representation in animals. Oxford University Press, Oxford, pp 1–17

  7. Cheng K, Spetch ML, Kelly DM, Bingman VP (2006) Small-scale spatial cognition in pigeons. Behav Proc 72:115–127

  8. Della Chiesa A, Speranza M, Tommasi L, Vallortigara G (2006a) Spatial cognition based on geometry and landmarks in the domestic chick (Gallus gallus). Behav Brain Res 175:119–127

  9. Della Chiesa A, Pecchia T, Tommasi L, Vallortigara G (2006b) Multiple landmarks, the encoding of environmental geometry and the spatial logistics of a dual brain. Anim Cogn 9:281–293

  10. Gibson BM, Wilks TJ, Kelly DM (2007) Rats (Rattus norvegicus) encode the shape of an array of discrete objects. J Comp Psychol 121:130–144

  11. Gouteux S, Thinus-Blanc C, Vauclair J (2001) Rhesus monkeys use geometric and nongeometric information during a reorientation task. J Exp Psychol Gen 130:505–519

  12. Gray E, Spetch ML (2006) Pigeons encode absolute distance but relational direction from landmarks and walls. J Exp Psychol Anim Behav Proc 32:474–480

  13. Gray E, Spetch ML, Kelly DM, Nguyen A (2004) Searching in the center: pigeons encode relative distance from walls of an enclosure. J Comp Psychol 118:113–117

  14. Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Lett Nat 370:57–59

  15. Hupbach A, Nadel L (2005) Reorientation in a rhombic environment: no evidence for an encapsulated geometric module. Cogn Dev 20:279–302

  16. Kelly DM, Spetch ML (2001) Pigeons encode relative geometry. J Exp Psychol Anim Behav Proc 27:417–422

  17. Kelly DM, Spetch ML (in press) Comparative spatial cognition: encoding of geometric information from surfaces and landmark arrays. In: Wasserman E, Zentall T (eds) Handbook of comparative cognition. Oxford University Press

  18. Kelly DM, Spetch ML, Heth CD (1998) Pigeons’ (Columba livia) encoding of geometric and featural properties of a spatial environment. J Comp Psychol 112:259–269

  19. Kelly DM, Chiandetti C, Vallortigara G (2011) Re-orienting in space: do animals use global or local geometry strategies? Biol Lett 7:372–375

  20. Pearce JM, Good MA, Jones PM, McGregor A (2004) Transfer of spatial behavior between different environments: implications for theories of spatial learning and for the role of the hippocampus in spatial learning. J Exp Psychol Anim Behav Proc 30:135–147

  21. Reichert JF, Kelly DM (2011) Use of local and global geometry from object arrays by adult humans. Behav Process 86:196–205

  22. Sovrano VA, Bisazza A, Vallortigara G (2002) Modularity and spatial orientation in a simple mind: encoding of geometric and nongeometric properties of a spatial environment by fish. Cognition 85:B51–B59

  23. Sovrano VA, Bisazza A, Vallortigara G (2003) Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol Anim Behav Proc 29:199–210

  24. Sovrano VA, Bisazza A, Vallortigara G (2007) How fish do geometry in large and in small spaces. Anim Cogn 10:47–54

  25. Sturz BR, Gurley T, Bodily KD (2011) Orientation in trapezoid-shaped enclosures: implications for theoretical accounts of geometry learning. J Exp Psychol Anim Behav Proc 37:246–253

  26. Tommasi L, Polli C (2004) Representation of two geometric features of the environment in the domestic chick (Gallus gallus). Anim Cogn 7:53–59

  27. Tommasi L, Vallortigara G (2000) Searching for the center: spatial cognition in the domestic chick. J Exp Psychol Anim Behav Proc 26:477–486

  28. Twyman A, Friedman A, Spetch ML (2007) Penetrating the geometric module: catalyzing children’s use of landmarks. Dev Psychol 43:1523–1530

  29. Vallortigara G, Zanforlin M, Pasti G (1990) Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus). J Comp Psychol 104:248–254

  30. Vallortigara G, Pagni P, Sovrano VA (2004) Separate geometric and non-geometric modules for spatial representation: evidence from a lopsided animal brain. J Cogn Neurosci 16:390–400

  31. Vargas JP, López JC, Salas C, Thinus-Blanc C (2004) Encoding of geometric and featural information by goldfish (Carassius auratus). J Comp Psychol 118:206–216

  32. Wang RF, Hermer L, Spelke ES (1999) Mechanisms of reorientation and object localization by children: a comparison with rats. Behav Neurosci 113:475–485

  33. Wilzeck C, Prior H, Kelly DM (2009) Geometry and landmark representation by pigeons: evidence for species differences in the hemispheric organization of spatial information processing? Eur J Neurosci 29:813–822

  34. Wystrach A, Beugnon G (2009) Ants learn geometry and features. Curr Biol 19:61–66

Download references


We thank Jocelynn Gray and Carla Edgington for assistance with data collection and scoring and Isaac Lank for assistance with constructing the apparatus. This study was funded by a Natural Sciences and Engineering Research Council of Canada Discovery grant awarded to MLS. All research was conducted in accordance with Canadian Council on Animal Care guidelines and with approval from the University of Alberta Animal Welfare Policy Committee.

Author information

Correspondence to Danielle M. Lubyk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 10701 kb)

Supplementary material 1 (WMV 10701 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lubyk, D.M., Spetch, M.L. Finding the best angle: pigeons (Columba livia) weight angular information more heavily than relative wall length in an open-field geometry task. Anim Cogn 15, 305–312 (2012) doi:10.1007/s10071-011-0454-x

Download citation


  • Geometry
  • Orientation
  • Parallelogram
  • Wall length
  • Angular amplitude