Visual Geosciences

, Volume 13, Issue 1, pp 37–47 | Cite as

Visualization of time-dependent dynamics of postglacial rebound

  • Ladislav HanykEmail author
  • David A. Yuen
  • Ctirad Matyska
  • Jakub Velímský
Original Article


Postglacial rebound is a major geological process which plays an important role in many areas in the earth sciences. Up to now, most of the images derived from studies of the glacial isostatic adjustment phenomenon have been concerned with surface signatures, such as the uplift and gravity anomalies and not much attention has been paid on the dynamical responses in the mantle. We will make use of the 3D visualization package Amira to depict both the external and internal deformation histories of the transient viscoelastic flow inside the mantle induced by postglacial uplift. Of particularly great interest are the transient displacement fields and shear heating inside the mantle. This same visualization technology can be brought to bear in the future for visualizing tsunami waves in ocean basins excited by earthquakes, volcanic eruptions and InSAR images. We have also integrated the visualization results into the Google Earth virtual globe by combining this scheme with the Amira package to provide a better geographical and dynamical context.


Amira package Google earth Postglacial rebound Viscoelastic flow 3D visualization 



We thank Ying-chun Liu, Huai Zhang, Ben Kadlec and Xiaoru Yuan for stimulating discussions and Lapo Boschi and Georg Kaufmann for valuable comments. This work has been supported by Research Program MSM0021620860 of the Czech Ministry of Education, NSF’s ITR and CMG programs.

Supplementary material

ESM1 (avi 502 kb)

ESM2 (avi 3.05 mb)

ESM3 (avi 2.28 mb)

ESM4 (avi 2.20 mb)

ESM5 (avi 2.26 mb)

ESM6 (avi 4.42 mb)

ESM7 (avi 4.64 mb)


  1. Alley RB, Clark PU, Huybrechts P, Joughin I (2005) Ice-sheet and sea-level changes. Science 310:456–460CrossRefGoogle Scholar
  2. Cathles LM (1975) The viscosity of the Earth’s mantle. Princeton, New JerseyGoogle Scholar
  3. Cohen RE (2005) High-performance computing requirements for the computational solid Earth sciences.
  4. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  5. Erlebacher G, Yuen DA, Dubuffet F (2001) Current trends and demands in visualization in the geosciences. Electron Geosci 6:3 doi:  10.1007/s10069-001-1019-y Google Scholar
  6. Erlebacher G, Yuen DA, Lu Z, Bollig EF, Pierce M, Pallickara S (2006) A grid framework for visualization services in the Earth sciences. Pure Appl Geophys 163:2467–2483CrossRefGoogle Scholar
  7. Everett ME (1997) A three-dimensional spherical mesh generator. Geophys J Int 130:193–200CrossRefGoogle Scholar
  8. Furuya M, Wahr JM (2005) Water level changes at an ice-dammed lake in west Greenland inferred from InSAR data. Geophys Res Lett 32:L14501 doi:  10.1029/2005GL023458 CrossRefGoogle Scholar
  9. Goldstein DE, Kadlec BJ, Yuen DA, Erlebacher G (2005) Visualizing 3D turbulence on temporally adaptive wavelet collocation grids. Eos Trans AGU 86(52), Fall Meet Suppl, Abstract IN43B-0333Google Scholar
  10. Hanyk L (1999) Viscoelastic response of the earth: initial-value approach. PhD Thesis, Charles University, Prague
  11. Hanyk L, Yuen DA, Matyska C (1996) Initial-value and modal approaches for transient viscoelastic responses with complex viscosity profiles. Geophys J Int 127:348–362CrossRefGoogle Scholar
  12. Hanyk L, Matyska C, Yuen DA (1998) Initial-value approach for viscoelastic responses of the earth’s mantle. In: Wu P (ed) Dynamics of the ice age earth: a modern perspective. Trans Tech Publ, Switzerland, pp 135–154Google Scholar
  13. Hanyk L, Matyska C, Yuen DA (1999) Secular gravitational instability of a compressible viscoelastic sphere. Geophys Res Lett 26:557–560CrossRefGoogle Scholar
  14. Hanyk L, Matyska C, Yuen DA (2002) Determination of viscoelastic spectra by matrix eigenvalue analysis. In: Mitrovica JX, Vermeersen BLA (eds) Ice sheets, sea level and the dynamic Earth, Geodynamics Series 29, AGU, pp 257–273CrossRefGoogle Scholar
  15. Hanyk L, Matyska C, Yuen DA (2005) Short time-scale heating of the Earth’s mantle by ice-sheet dynamics. Earth Planet Space 57:895–902CrossRefGoogle Scholar
  16. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–32CrossRefGoogle Scholar
  17. Hetland EA, Hager BH (2006) The effects of rheological layering on post-seismic deformation. Geophys J Int 166:277–292CrossRefGoogle Scholar
  18. Latychev K, Mitrovica JX, Tromp J, Tamisiea ME, Komatitsch D, Christara CC (2005) Glacial isostatic adjustment on 3-D Earth models: a finite-volume formulation. Geophys J Int 161:421–444CrossRefGoogle Scholar
  19. Liu YS, Zhang H, Yuen DA, Wang M (2005) High-performance computing and visualization of tsunamis and wind-driven waves. Eos Trans AGU 86(52), Fall Meet Suppl, Abstract S51D-1034Google Scholar
  20. Mitrovica JX, Forte AM (2004) A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet Sci Lett 225:177–189CrossRefGoogle Scholar
  21. Mitrovica JX, Vermeersen BLA (2002) Glacial isostatic adjustment and the Earth system. In: Mitrovica JX, Vermeersen BLA (eds) Ice sheets, sea level and the dynamic earth. Geodynamics Series 29, AGU, pp 3–32CrossRefGoogle Scholar
  22. Peltier WR (1974) The impulse response of a Maxwell Earth. Rev Geophys Space Phys 12:649–669CrossRefGoogle Scholar
  23. Peltier WR (1994) Ice age paleotopography. Science 265:195–201CrossRefGoogle Scholar
  24. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  25. Plag H-P, Jüttner H-U (1995) Rayleigh-Taylor instabilities of a self-gravitating Earth. J Geodyn 20:267–288CrossRefGoogle Scholar
  26. Prockter LM, Nimmo F, Pappalardo RT (2005) A shear heating origin for ridges on Triton. Geophys Res Lett 32:L14202CrossRefGoogle Scholar
  27. Ranalli G (1995) Rheology of the Earth. Chapman & Hall, LondonGoogle Scholar
  28. Sabadini R, Vermeersen B (2004) Global dynamics of the Earth: Applications of normal mode relaxation theory to solid-earth geophysics. Kluwer, DordrechtCrossRefGoogle Scholar
  29. Schiesser WE (1994) Computational mathematics in engineering and applied science: ODEs, DAEs, and PDEs. CRC, FloridaGoogle Scholar
  30. Siegert MJ (2001) Ice sheets and late quaternary environmental change. Wiley, ChichesterGoogle Scholar
  31. Spada G, Ricard Y, Sabadini R (1992) Excitation of true polar wander by subduction. Nature 360:452–454CrossRefGoogle Scholar
  32. Tromp J, Mitrovica JX (2000) Surface loading of a viscoelastic Earth—III. Aspherical models. Geophys J Int 140:425–441CrossRefGoogle Scholar
  33. Velicogna I, Wahr J (2002) Post glacial rebound and earth’s viscosity structure from GRACE. J Geophys Res 107:2376 doi:  10.1029/2001JB001735 Google Scholar
  34. Velimsky J, Inovecky L, Matyska C (2006) (In)Finite element approach to modelling of viscoelastic relaxation of the earth. EGU, 3rd General Assembly, ViennaGoogle Scholar
  35. Wu P, Peltier WR (1982) Viscous gravitational relaxation. Geophys J R Astr Soc 70:435–485CrossRefGoogle Scholar
  36. Wu P, Ni Z, Kaufmann G (1998) Postglacial rebound with lateral heterogeneities: From 2D to 3D modelling. In: Wu P (eds) Dynamics of the ice age Earth: a modern perspective. Trans Tech Publ, Switzerland, pp 557–582Google Scholar
  37. Xing HL, Zhang J, Yin C (2007) Finite element analysis of tidal deformation of the entire earth with non-continuum out layer. Geophys J Int (in press)Google Scholar
  38. Yuan X, Liu Y-C, Yuen DA, Chen B, Pergler T, Shi Y (2006) An efficient method for creating InSAR-like images. Pure Appl Geophys (submitted )Google Scholar
  39. Zhang H, Shi Y, Yuen DA, Liu YC, Zhang C, Yuan X (2006) Modelling and visualization of tsunamis. Pure Appl Geophys (submitted)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ladislav Hanyk
    • 1
    Email author
  • David A. Yuen
    • 2
  • Ctirad Matyska
    • 1
  • Jakub Velímský
    • 1
  1. 1.Faculty of Mathematics and Physics, Department of GeophysicsCharles UniversityPragueCzech Republic
  2. 2.Department of Geology and Geophysics and Minnesota Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations