Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

GC–MS metabolomics revealed protocatechuic acid as a cytotoxic and apoptosis-inducing compound from black rice brans

  • 10 Accesses


GC–MS metabolomics was used to discriminate the phytochemicals profile of Indonesian white, red, and black rice brans, and Japanese white rice brans. This technique was used for the first time to identify compounds in rice brans having cytotoxic activity against WiDr colon cancer cells. Orthogonal Projection to the Latent Structure (OPLS) analysis showed that protocatechuic acid (PA) was a discriminating factor found in black rice brans which strongly correlated with its cytotoxicity (IC50 8.53 ± 0.26 µM). Real time-PCR data demonstrated that PA cytotoxicity at different concentrations (1, 5, 10, 25 and 50 µg/mL) was mediated through different pathways. Bcl-2 expression was downregulated at all tested concentrations indicating apoptosis stimulation. At 1–10 ppm concentration, PA activated both intrinsic and extrinsic apoptosis pathways since the expression of p53, Bax, caspase-8, and caspase-9 were upregulated. At a higher dose (25 and 50 µg/mL), PA possibly involved in pyroptosis-mediated pro-inflammatory cell death by upregulating the expression of caspase-1 and caspase-7.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Banjerdpongchai R, Wudtiwai B, Sringarm K. Cytotoxic and apoptotic-inducing effects of purple rice extracts and chemotherapeutic drugs on human cancer cell lines. Asian Pac. J. Cancer Prev. 14: 6541-6548 (2014)

  2. Carballeira NM, Lopez MR. On the isolation of 2-hydroxydocosanoic and 2-hydroxytricosanoic acids from the marine spongeAmphimedon compressa. Lipids 24: 89-91 (1989)

  3. Chatthongpisut R, Schwartz SJ, Yongsawatdigul J. Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells. Food Chem. 188: 99-105 (2015)

  4. Eriksson L, Rosén J, Johansson E, Trygg J. Orthogonal PLS (OPLS) modeling for improved analysis and interpretation in drug design. Mol. Inform. 31(6–7): 14-419 (2012)

  5. de Falco B, Fiore A, Bochicchio R, Amato M, Lanzotti V. Metabolomic analysis by UAE-GC MS and antioxidant activity of Salvia hispanica (L.) seeds grown under different irrigation regimes. Ind. Crops Prod. 112: 584-592 (2018)

  6. Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nuñez G, Krammer PH, Peter ME, Debatin KM. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res. 57(21): 4956-64 (1997)

  7. Garcia A, Barbas C. Gas chromatography–mass spectrometry (GC–MS)-based metabolomics. pp.191-204. In: Methods in molecular biology. Metz TA (ed). Humana Press, Totowa, NJ, USA (2011)

  8. Henderson AJ, Ollila CA, Kumar A, Borresen EC, Raina K, Agarwal R, Ryan EP. Chemopreventive properties of dietary rice bran: current status and future prospects. Adv. Nutr. Int. Rev. J. 3: 643-653 (2012)


  10. Iqbal S, Bhanger MI, Anwar F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 93: 265-272 (2005)

  11. Javadi N, Abas F, Hamid AA, Simoh S, Shaari K, Ismail IS, Mediani A, Khatib A. GC–MS-based metabolite profiling of Cosmos caudatus leaves possessing alpha-glucosidase inhibitory activity. J Food Sci. 79(6): C1130-C1136 (2014)

  12. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J. Clin. 61: 69-90 (2011)

  13. Kivilompolo M, Obůrka V, Hyötyläinen T. Comparison of GC–MS and LC–MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 388: 881-887 (2007)

  14. Kong CKL, Lam WS, Chiu LCM, Ooi VEC, Sun SSM, Wong Y-S. A rice bran polyphenol, cycloartenyl ferulate, elicits apoptosis in human colorectal adenocarcinoma SW480 and sensitizes metastatic SW620 cells to TRAIL-induced apoptosis. Biochem. Pharmacol. 77(9): 1487-1496 (2009)

  15. Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C. Multi- and megavariate data analysis. Basic, Principle and Application. Third Revised Edition. Umetrics Academy Umeå, Sweden. pp 362-370 (2013)

  16. Lamkanfi M, Kanneganti T-D. Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42: 21-24 (2010)

  17. Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V. Antioxidants and antioxidant activity of several pigmented rice brans. J. Agric. Food Chem. 59(1): 193-199 (2011)

  18. Lerma-García MJ, Herrero-Martínez JM, Simó-Alfonso EF, Mendonça CRB, Ramis-Ramos G. Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem.115: 389-404 (2009)

  19. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 88: 323-331 (1997)

  20. Lin HH, Chen JH, Chou FP, Wang CJ. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br. J. Pharmacol. 162: 237-254 (2011)

  21. Nam SH, Choi SP, Kang MY, Kozukue N, Friedman M. Antioxidative, antimutagenic, and anticarcinogenic activities of rice bran extracts in chemical and cell assays. J. Agric. Food Chem. 53: 816-822 (2005)

  22. Park HY, Yu AR, Choi IW, Hong HD, Lee KW, Choi HD. Immunostimulatory effects and characterization of a glycoprotein fraction from rice bran. Int. Immunopharmacol. 17(2): 191-197 (2013)

  23. Perez-Ternero C, Werner CM, Nickel AG, Herrera MD, Motilva MJ, Böhm M, de Sotomayor MA, Laufs U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J. Nutr. Biochem. 48: 51-61 (2017)

  24. Premakumara GAS, Abeysekera WKSM, Ratnasooriya WD, Chandrasekharan NV, Bentota AP. Antioxidant, anti-amylase and anti-glycation potential of brans of some Sri Lankan traditional and improved rice (Oryza sativa L.) varieties. J. Cereal Sci. 58: 451-456 (2013)

  25. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem. 51: 2866-2887 (2003)

  26. Sen S, D’Incalci M. Apoptosis biochemical events and relevance to cancer chemotherapy. FEBS Lett. 307(1): 122-127 (1992)

  27. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 22: 526-539 (2015)

  28. da Silva RAC, de Lemos TLG, Ferreira DA, Monte FJQ. Ximenia americana chemical and spectral studies of extracts of seeds: analysis of drimethylsilyl derivatives by gas chromatography and mass spectrometry. Am. J. Anal. Chem. 07(02): 192-202 (2016)

  29. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR. GC–MS-based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evid. Based Complement. Altern. Med. 2017: 1-10 (2017)

  30. Tanaka T, Tanaka T, Tanaka M. Potential cancer chemopreventive activity of protocatechuic acid. J. Exp. Clin. Med. 3: 27-33 (2011)

  31. Wang L, Li Y, Zhu L, Yin R, Wang R, Luo X, Li Y, Li Y, Chen Z. Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro. Int. J. Biol. Macromol. 88: 424-432 (2016)

  32. Xie Z, Guo Z, Wang Y, Lei J, Yu J. Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy. Phyther. Res. 32: 2256-2263 (2018)

  33. Yin M-C, Lin C-C, Wu H-C, Tsao S-M, Hsu C-K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J. Agric. Food Chem. 57: 6468-6473 (2009)

  34. Yuliana ND, Budijanto S, Verpoorte R, Choi YH. NMR metabolomics for identification of adenosine A1 receptor binding compounds from Boesenbergia rotunda rhizomes extract. J. Ethnopharmacol. 150: 95-99 (2013)

  35. Yulianto W, Andarwulan N, Giriwono PE, Pamungkas J. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7 Cells. J. Chromatogr. B 1039: 28-34 (2016)

  36. Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice bran metabolome contains amino acids, vitamins & cofactors, and phytochemicals with medicinal and nutritional properties. Rice 10: 24 (2017)

  37. Zarei I, Luna E, Leach J, McClung A, Vilchez S, Koita O, Ryan E, Zarei I, Luna E, Leach JE, McClung A, Vilchez S, Koita O, Ryan EP. Comparative rice bran metabolomics across diverse cultivars and functional rice gene–bran metabolite relationships. Metabolites 8: 63 (2018)

Download references


Ministry of Research and Higher Education Republic of Indonesia is gratefully acknowledged for partially funding this research through International Collaboration Research scheme with contract number 631/IT3.11/PL/2015.

Author information

NDY: writing the manuscript, responsible for multivariate data analysis. MZT: responsible for sample extraction and in vitro experiment, proof read the manuscript. AK: responsible for GC–MS measurement, proof read the manuscript. FL: responsible for RT PCR experiment, proof read the manuscript. S: checking and read carefully the manuscript for any inappropriate content and misspelling.

Correspondence to Nancy Dewi Yuliana.

Ethics declarations

Conflict of interest


Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuliana, N.D., Tuarita, M.Z., Khatib, A. et al. GC–MS metabolomics revealed protocatechuic acid as a cytotoxic and apoptosis-inducing compound from black rice brans. Food Sci Biotechnol (2020).

Download citation


  • Rice brans
  • Cytotoxicity
  • Apoptosis
  • Metabolomics
  • Protocatechuic acid