A new design for obtaining of white zein micro- and nanoparticles powder: antisolvent-dialysis method

  • Francisco Rodríguez-Félix
  • Carmen Lizette Del-Toro-Sánchez
  • José Agustín Tapia-HernándezEmail author


The objective of this work was propose antisolvent-dialysis as a new, easy, one-step and reproducible method for obtaining white zein micro- and nanoparticles powder. Firstly, the study by SEM of white zein powder predicted micro- and nanoparticles with spherical morphology and average diameters of 243.2 ± 94.5 nm for nanoparticles and 0.74 ± 0.2 μm for microparticles. UV–Vis predicted lower absorbance of 250–500 nm for white zein powder compared to commercial yellow zein powder. FT-IR showed shifting of the main bands to the right, due to changes in particle-shaped microstructure that acquires white zein powder compared to yellow zein powder. In TGA white zein powder showed a decomposition range from 214 to 400 °C, while yellow zein powder from 240 to 400 °C. Therefore, antisolvent-dialysis is new method to obtain white zein micro- and nanoparticles with potential applications such as polymer matrix and white natural coloring.


Antisolvent-dialysis method White zein powder Microparticles Nanoparticles Characterization 



M.Sc. José Agustín Tapia Hernández, thanks CONACYT for the scholarship granted.

Compliance with ethical standards

Conflict of interest

The authors declared no conflict of interest.


  1. Ahmed S, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 9: 1-7 (2016)CrossRefGoogle Scholar
  2. An B, Wu X, Li M, Chen Y, Li F, Yan X, Wang J, Chaoxu L, Brennan C. Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol. Int. J. Food. Sci. Tech. 51: 2621-2629 (2016)CrossRefGoogle Scholar
  3. Aswathy RG, Sivakumar B, Brahatheeswaran D, Fukuda T, Yoshida Y, Maekawa T, Kumar DS. Biocompatible fluorescent zein nanoparticles for simultaneous bioimaging and drug delivery application. Adv. Nat. Sci. Nanosci. Nanotechnol. 3: 025006 (2012)CrossRefGoogle Scholar
  4. Barreras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, Burruel-Ibarra SE, Martínez-Cruz O, Tapia-Hernández JA, Rodriguez-Felix F. Nano-and micro-particles by nanoprecipitation: possible application in the food and agricultural industries. Int. J. Food Prop. 19: 1912-1923 (2016)CrossRefGoogle Scholar
  5. Barreras-Urbina CG, Rodríguez-Félix F, López-Ahumada GA, Burruel-Ibarra SE, Tapia-Hernández JA, Castro-Enríquez DD, Rueda-Puente EO. Microparticles from wheat-gluten proteins soluble in ethanol by nanoprecipitation: preparation, characterization, and their study as a prolonged-release fertilizer. Int. J. Polym. Sci. 2018:1042798 (2018)Google Scholar
  6. Baspinar Y, Üstündas M, Bayraktar O, Sezgin C. Curcumin and piperine loaded zein-chitosan nanoparticles: development and in vitro characterisation. Saudi Pharm. J. 26: 323-334 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bhushani JA, Kurrey NK, Anandharamakrishnan C. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in vitro permeability. J. Food Eng. 199: 82-92 (2017)CrossRefGoogle Scholar
  8. Briz-Cid N, Pose-Juan E, Rial-Otero R, Simal-Gándara J. Proteome changes in Garnacha Tintorera red grapes during post-harvest drying. LWT Food Sci. Technol. 69: 608-613 (2016)CrossRefGoogle Scholar
  9. Cheng CJ, Ferruzzi M, Jones OG. Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion. Food Hydrocolloid. 87: 229-236 (2019)CrossRefGoogle Scholar
  10. Dai L, Sun C, Li R, Mao L, Liu F, Gao Y. Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem. 237: 1163-1171 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  11. Dalwadi G, Benson HA, Chen Y. Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm. Res. 22: 2152-2162 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  12. De Boer FY, Kok RNU, Imhof A, Velikov KP. White zein colloidal particles: synthesis and characterization of their optical properties on the single particle level and in concentrated suspensions. Soft Matter 14: 2870-2878 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  13. Do Carmo CS, Maia C, Poejo J, Lychko I, Gamito P, Nogueira I, Bronze MR, Serra AT, Duarte CM. Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. 7: 32065-32075 (2017)CrossRefGoogle Scholar
  14. Doost AS, Muhammad DRA, Stevens CV, Dewettinck K, Van der Meeren P. Fabrication and characterization of quercetin loaded almond gum-shellac nanoparticles prepared by antisolvent precipitation. Food Hydrocolloid. 83: 190-201 (2018)CrossRefGoogle Scholar
  15. Ebert S, Koo CK, Weiss J, McClements DJ. Continuous production of core-shell protein nanoparticles by antisolvent precipitation using dual-channel microfluidization: Caseinate-coated zein nanoparticles. Food Res. Int. 92: 48-55 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  16. Grant ML, Stowell GW, Menkin P. Diketopiperazine microparticles with defined specific surface areas. Washington, DC: U.S, Patent No. 8,734,845 (2014)Google Scholar
  17. Hu K, McClements DJ. Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles. Food Hydrocoll. 44: 101-108 (2015)CrossRefGoogle Scholar
  18. Huang X, Dai Y, Cai J, Zhong N, Xiao H, McClements DJ, Hu K. Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities. Food Hydrocoll. 64: 157-165 (2017)CrossRefGoogle Scholar
  19. Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci. Technol. 34: 109-123 (2013)CrossRefGoogle Scholar
  20. Li F, Chen Y, Liu S, Qi J, Wang W, Wang C, Kong W. Size-controlled fabrication of zein nano/microparticles by modified anti-solvent precipitation with/without sodium caseinate. Int. J. Nanomed. 12: 8197 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  21. Li H, Xu Y, Sun X, Wang S, Wang J, Zhu J, Wang D, Zhao L. Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation. Food Hydrocoll. 84: 379-388 (2018)CrossRefGoogle Scholar
  22. Liu G, Wei D, Wang H, Hu Y, Jiang Y. Self-assembly of zein microspheres with controllable particle size and narrow distribution using a novel built-in ultrasonic dialysis process. Chem. Eng. J. 284: 1094-1105 (2016)CrossRefGoogle Scholar
  23. Liu G, Feng J, Zhu W, Jiang Y. Zein self-assembly using the built-in ultrasonic dialysis process: microphase behavior and the effect of dialysate properties. Colloid. Polym. Sci. 296: 73-181 (2018)Google Scholar
  24. Luo Y, Wang Q. Zein-based micro- and nano-particles for drug and nutrient delivery: a review. J. Appl. Polym. Sci. 131: 40696 (2014)CrossRefGoogle Scholar
  25. Melzig S, Finke JH, Schilde C, Kwade A. Formation of long-term stable amorphous ibuprofen nanoparticles via antisolvent melt precipitation (AMP). Eur. J. Pharm. Biopharm. 131: 224-231 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  26. Mensah TO, Wang B, Bothun G, Davis V, Winter J. Nanotechnology Commercialization: Manufacturing Processes and Products. Wiley, New York (2017)CrossRefGoogle Scholar
  27. Palencia M, Rivas BL, Valle H. Size separation of silver nanoparticles by dead-end ultrafiltration: Description of fouling mechanism by pore blocking model. J. Membrane Sci. 455: 7-14 (2014)CrossRefGoogle Scholar
  28. Pascoli M, de Lima R, Fraceto LF. Zein Nanoparticles and strategies to improve colloidal stability: a mini-review. Front. Chem. 6: 6 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  29. Patel AR, Velikov KP. Zein as a source of functional colloidal nano-and microstructures. Curr. Opin. Colloid Interface Sci. 19: 450-458 (2014)CrossRefGoogle Scholar
  30. Podaralla S, Perumal O. Influence of formulation factors on the preparation of zein nanoparticles. Aaps Pharms. 13: 919-927 (2012)CrossRefGoogle Scholar
  31. Ren X, Ma H, Mao S, Zhou H. Effects of sweeping frequency ultrasound treatment on enzymatic preparations of ACE-inhibitory peptides from zein. Eur. Food Res. Technol. 238: 435-442 (2014)CrossRefGoogle Scholar
  32. Rodríguez-Félix F, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Juárez J, Ruiz-Cruz S, López-Ahumada GA, Carbajal-Millan E, Castro-Enríquez DD, Barreras-Urbina CG, Tapia-Hernández JA. Preparation and characterization of quercetin-loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J. Food. Sci. 84: 2883-2897 (2019)Google Scholar
  33. Sessa DJ, Eller FJ, Palmquist DE, Lawton JW. Improved methods for decolorizing corn zein. Ind. Crops Prod. 18: 55-65 (2003)CrossRefGoogle Scholar
  34. Sessa DJ, Palmquist DE. Effect of heat on the adsorption capacity of an activated carbon for decolorizing/deodorizing yellow zein. Bioresour. Technol. 99: 6360-6364 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  35. Sessa DJ, Woods KK. Purity assessment of commercial zein products after purification. J Am. Oil Chem. Soc. 88: 1037-1043 (2011)CrossRefGoogle Scholar
  36. Solís CA, Vélez CA, Ramírez-Navas JS. Membrane technology: ultrafi ltration. Entre Ciencia e Ingeniería 11(22): 26-36 (2017)CrossRefGoogle Scholar
  37. Tapia-Hernandez JA, Torres-Chavez PI, Ramirez-Wong B, Rascon-Chu A, Plascencia-Jatomea M, Barreras-Urbina CG, Rangel-Vazquez NA, Rodriguez-Felix F. Micro-and nanoparticles by electrospray: advances and applications in foods. J. Agric. Food Chem. 63: 4699-4707 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  38. Tapia-Hernández JA, Rodríguez-Félix F, Katouzian I. Nanocapsule formation by electrospraying. pp. 320-345. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Jafari, SM. Academic Press (2017)Google Scholar
  39. Tapia-Hernández JA, Rodríguez-Felix F, Juárez-Onofre JE, Ruiz-Cruz S, Robles-García MA, Borboa-Flores J, Wong-Corral FJ, Cinco-Moroyoqui FJ, Castro-Enríquez FJ, Del-Toro-Sánchez CL. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: a strategy for prevention of chronic degenerative diseases. Food. Res. Int. 111: 451-471 (2018a)PubMedCrossRefPubMedCentralGoogle Scholar
  40. Tapia-Hernández JA, Rodríguez-Félix DE, Plascencia-Jatomea M, Rascn-Chu A, López-Ahumada GA, Ruiz-Cruz S, Barreras-Urbina CG, Rodríguez-Félix F. Porous wheat gluten microparticles obtained by electrospray: preparation and characterization. Adv. Polym. Technol. 37: 2314-2324 (2018b)CrossRefGoogle Scholar
  41. Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Ruiz-Cruz S, Juárez J, Castro-Enríquez DD, Barreras-Urbina CG, López-Ahumada GA, Rodríguez-Félix F. Gallic acid-loaded zein nanoparticles by electrospraying process. J. Food. Sci. 84: 818-831 (2019a)PubMedCrossRefPubMedCentralGoogle Scholar
  42. Tapia-Hernández JA, Del-Toro-Sánchez CL, Cinco-Moroyoqui FJ, Juárez-Onofre JE, Ruiz-Cruz S, Carvajal-Millan E, López-Ahumada GA, Castro-Enriquez DD, Barreras-Urbina CG, Rodríguez-Felix F. Prolamins from cereal by-products: classification, extraction, characterization and its applications in micro-and nanofabrication. Trends Food Sci. Technol. 90: 111–132 (2019b)CrossRefGoogle Scholar
  43. Wang Y, Padua GW. Formation of zein microphases in ethanol–water. Langmuir 26: 12897-12901 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  44. Wang Y, Padua GW. Nanoscale characterization of zein self-assembly. Langmuir 28: 2429-2435 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  45. Wang M, Fu Y, Chen G, Shi Y, Li X, Zhang H, Shen Y. Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocoll. 77: 577-587 (2018a)CrossRefGoogle Scholar
  46. Wang T, Qi J, Ding N, Dong X, Zhao W, Lu Y, Wang C, Wu W. Tracking translocation of self-discriminating curcumin hybrid nanocrystals following intravenous delivery. Int. J. Pharm. 546: 10-19 (2018b)PubMedCrossRefPubMedCentralGoogle Scholar
  47. Yadav D, Kumar N. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int. J. Pharm. 477: 564-577 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  48. Zhang X, Chen H, Qian F, Cheng Y. Preparation of itraconazole nanoparticles by anti-solvent precipitation method using a cascaded microfluidic device and an ultrasonic spray drier. Chem. Eng. J. 334: 2264-2272 (2018)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Research and Posgraduate in Food (DIPA)University of SonoraHermosilloMexico

Personalised recommendations