Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase

  • Dong-Ho Seo
  • Sang-Ho Yoo
  • Seung-Jun Choi
  • Young-Rok Kim
  • Cheon-Seok ParkEmail author


Amylosucrase (AS; EC is an enzyme that has great potential in the biotechnology and food industries, due to its multifunctional enzyme activities. It can synthesize α-1,4-glucans, like amylose, from sucrose as a sole substrate, but importantly, it can also utilize various other molecules as acceptors. In addition, AS produces sucrose isomers such as turanose and trehalulose. It also efficiently synthesizes modified starch with increased ratios of slow digestive starch and resistant starch, and glucosylated functional compounds with increased water solubility and stability. Furthermore, AS produces turnaose more efficiently than other carbohydrate-active enzymes. Amylose synthesized by AS forms microparticles and these can be utilized as biocompatible materials with various bio-applications, including drug delivery, chromatography, and bioanalytical sciences. This review not only compares the gene and enzyme characteristics of microbial AS, studied to date, but also focuses on the applications of AS in the biotechnology and food industries.


Amylosucrase Transglycosylation Enzymatically modified starch Turanose Amylose 



This research was supported by the National Research Foundation of Korea (NRF) Grant (No. 2018R1C1B6001459) funded by the Korea government (MSIT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Albenne C, Skov LK, Mirza O, Gajhede M, Feller G, D’Amico S, André G, Potocki-Véronèse G, van der Veen BA, Monsan P, Remaud-Simeon M. Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase. J. Biol. Chem. 279: 726-734 (2004)CrossRefPubMedGoogle Scholar
  2. Ao Z, Simsek S, Zhang G, Venkatachalam M, Reuhs BL, Hamaker BR. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J. Agric. Food Chem. 55: 4540-4547 (2007)CrossRefPubMedGoogle Scholar
  3. Bae HK, Lee SB, Park CS, Shim JH, Lee HY, Kim MJ, Baek JS, Roh HJ, Choi JH, Choe EO, Ahn DU, Park KH. Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. J. Agric. Food Chem. 50: 3309-3316 (2002)CrossRefPubMedGoogle Scholar
  4. Buchholz K, Noll-Borchers M, Schwengers D. Production of leucrose by dextransucrase. Starch 50: 164-172 (1998)CrossRefGoogle Scholar
  5. Buléon A, Véronèse G, Putaux J-L. Self-association and crystallization of amylose. Aust. J. Chem. 60: 706-718 (2007)CrossRefGoogle Scholar
  6. But SY, Khmelenina VN, Reshetnikov AS, Mustakhimov II, Kalyuzhnaya MG, Trotsenko YA. Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Arch. Microbiol. 197: 471-480 (2015)CrossRefPubMedGoogle Scholar
  7. Büttcher V, Welsh T, Willmitzer L, Kossmann J. Cloning and characterization of the gene for amylosucrase from Neisseria polysaccharea: production of a linear α-1,4-glucan. J. Bacteriol. 179: 3324-30 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  8. Casarrubias-Castillo MG, Hamaker BR, Rodriguez-Ambriz SL, Bello-Pérez LA. Physicochemical, structural, and digestibility properties of enzymatic modified plantain and mango starches. Starch 64: 304-312 (2012)CrossRefGoogle Scholar
  9. Champion E, André I, Moulis C, Boutet J, Descroix K, Morel S, Monsan P, Mulard LA, Remaud-Siméon M. Design of α-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J. Am. Chem. Soc. 131: 7379-7389 (2009)CrossRefPubMedGoogle Scholar
  10. Chiba S, Shimomura T. Studies on enzymatic synthesis of oligosaccharides. Agric. Biol. Chem. 35: 1363-1370 (1971)Google Scholar
  11. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Yoo SH, Cha J, Kim YR, Park CS. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253 (2011)CrossRefPubMedGoogle Scholar
  12. Choi S-W, Lee J-A, Yoo S-H. Sucrose-based biosynthetic process for chain-length-defined α-glucan and functional sweetener by Bifidobacterium amylosucrase. Carbohydr. Polym. 205: 581-588 (2019)CrossRefPubMedGoogle Scholar
  13. Chung J-Y, Kim Y-S, Kim Y, Yoo S-H. Regulation of inflammation by sucrose isomer, turanose, in Raw 264.7 cells. J. Cancer Prev. 22: 195-201 (2017a)CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chung J-Y, Lee J, Lee D, Kim E, Shin J-H, Seok PR, Yoo S-H, Kim Y. Acute and 13-week subchronic toxicological evaluations of turanose in mice. Nutr. Res. Pract. 11: 452-460 (2017b)CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dahlqvist A. Characterization of hog intestinal invertase as a glucosido-invertase. Acta Chem. Scand. 14: 63-71 (1960)CrossRefGoogle Scholar
  16. Emond S, Potocki-Véronèse G, Mondon P, Bouayadi K, Kharrat H, Monsan P, Remaud-Simeon M. Optimized and automated protocols for high-throughput screening of amylosucrase libraries. J. Biomol. Screen. 12: 715-723 (2007)CrossRefPubMedGoogle Scholar
  17. Emond S, André I, Jaziri K, Potocki-Véronèse G, Mondon P, Bouayadi K, Kharrat H, Monsan P, Remaud-Simeon M. Combinatorial engineering to enhance thermostability of amylosucrase. Protein Sci. 17: 967-976 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  18. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46: E33-E50 (1992)Google Scholar
  19. Englyst KN, Vinoy S, Englyst HN, Lang V. Glycaemic index of cereal products explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 89: 329-40 (2003)CrossRefPubMedGoogle Scholar
  20. Fágáin CÓ. Understanding and increasing protein stability. BBA-Protein Struct. Mol. Enzym. 1252: 1-14 (1995)CrossRefGoogle Scholar
  21. Guérin F, Barbe S, Pizzut-Serin S, Potocki-Véronèse G, Guieysse D, Guillet V, Monsan P, Mourey L, Remaud-Siméon M, André I, Tranier S. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. J. Biol. Chem. 287: 6642-6654 (2012)CrossRefPubMedGoogle Scholar
  22. Ha SJ, Seo DH, Jung JH, Cha J, Kim TJ, Kim YW, Park CS. Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci. Biotechnol. Biochem. 73: 1505-1512 (2009)CrossRefPubMedGoogle Scholar
  23. Hehre EJ. The substituted-sucrose structure of melezitose. pp. 277-290. In: Advances in Carbohydrate Chemistry. Hudson CS, Wolfrom ML (eds). Academic Press, Cambridge (1953)Google Scholar
  24. Hehre EJ, Hamilton DM. The conversion of sucrose to a polysaccharide of the starch-glycogen llass by Neisseria from the pharynx. J. Bacteriol. 55: 197-208 (1948)PubMedPubMedCentralGoogle Scholar
  25. Hehre EJ, Hamilton DM, Carlson AS. Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell free, bacterial enzyme system (Amylosucrase). J. Biol. Chem. 177: 267-279 (1949)PubMedGoogle Scholar
  26. Hodoniczky J, Morris CA, Rae AL. Oral and intestinal digestion of oligosaccharides as potential sweeteners: A systematic evaluation. Food Chem. 132: 1951-1958 (2012)CrossRefGoogle Scholar
  27. Horvathova V, Janecek S, Sturdik E. Amylolytic enzymes: molecular aspects of their properties. Gen. Physiol. Biophys. 20: 7-32 (2001)PubMedGoogle Scholar
  28. Jang S-W, Cho CH, Jung Y-S, Rha C, Nam T-G, Kim D-O, Lee Y-G, Baek N-I, Park C-S, Lee B-H, Lee S-Y, Shin HS, Seo D-H. Enzymatic synthesis of α-flavone glucoside via regioselective transglucosylation by amylosucrase from Deinococcus geothermalis. Plos ONE 13: e0207466 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jensen MH, Mirza O, Albenne C, Remaud-Simeon M, Monsan P, Gajhede M, Skov LK. Crystal structure of the covalent Intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43: 3104-3110 (2004)CrossRefPubMedGoogle Scholar
  30. Jeong J-W, Seo D-H, Jung J-H, Park J-H, Baek N-I, Kim M-J, Park C-S. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917 (2014)CrossRefPubMedGoogle Scholar
  31. Jo AR, Kim HR, Choi SJ, Lee JS, Chung MN, Han SK, Park C-S, Moon TW. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohydr. Polym. 143: 164-171 (2016)CrossRefPubMedGoogle Scholar
  32. Jun SY, Park KM, Choi KW, Jang M, Kang H, Lee SH, Park KH, Cha J. Inhibitory effects of arbutin-β-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol. Lett. 30: 743-748 (2008)CrossRefPubMedGoogle Scholar
  33. Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, Kim T-J, Baek N-I, Baik M-Y, Park C-S. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619 (2009)CrossRefPubMedGoogle Scholar
  34. Kim B-S, Kim H-S, Hong J-S, Huber KC, Shim J-H, Yoo S-H. Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches. Food Chem. 138: 966-975 (2013)CrossRefPubMedGoogle Scholar
  35. Kim BK, Kim HI, Moon TW, Choi SJ. Branch chain elongation by amylosucrase: Production of waxy corn starch with a slow digestion property. Food Chem. 152: 113-120 (2014a)CrossRefPubMedGoogle Scholar
  36. Kim KH, Park Y-D, Park H, Moon K-O, Ha K-T, Baek N-I, Park C-S, Joo M, Cha J. Synthesis and biological evaluation of a novel baicalein glycoside as an anti-inflammatory agent. Eur. J. Pharmacol. 744: 147-156 (2014b)CrossRefPubMedGoogle Scholar
  37. Kim M-D, Jung D-H, Seo D-H, Jung J-H, Seo E-J, Baek N-I, Yoo S-H, Park C-S. Acceptor specificity of amylosucrase from Deinococcus radiopugnans and its application for synthesis of rutin derivatives. J. Microbiol. Biotechnol. 26(11): 1845-1854 (2014c)CrossRefGoogle Scholar
  38. Kim M-D, Seo D-H, Jung J-H, Jung D-H, Joe M-H, Lim S, Lee J-H, Park C-S. Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans. Food Sci. Biotechnol. 23: 2007-2012 (2014d)CrossRefGoogle Scholar
  39. Kim EJ, Kim HR, Choi SJ, Park CS, Moon TW. Low digestion property of amylosucrase-modified waxy adlay starch. Food Sci. Biotechnol. 25: 457-460 (2016a)CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kim JH, Kim HR, Choi SJ, Park C-S, Moon TW. Production of an in vitro low-digestible starch via hydrothermal treatment of amylosucrase-modified normal and waxy rice starches and its structural properties. J. Agric. Food Chem. 64: 5045-5052 (2016b)CrossRefPubMedGoogle Scholar
  41. Kim HI, Kim HR, Choi SJ, Park C-S, Moon TW. Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid. Food Sci. Biotechnol. 26: 323-329 (2017a)CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kim HR, Choi SJ, Park C-S, Moon TW. Kinetic studies of in vitro digestion of amylosucrase-modified waxy corn starches based on branch chain length distributions. Food Hydrocolloid. 65: 46-56 (2017b)CrossRefGoogle Scholar
  43. Kim E-R, Rha C-S, Jung YS, Choi J-M, Kim G-T, Jung D-H, Kim T-J, Seo D-H, Kim D-O, Park C-S. Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis. Food Sci. Biotechnol. 28: 165-174 (2019)CrossRefPubMedGoogle Scholar
  44. Kong L, Lee C, Kim SH, Ziegler GR. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy. J. Phys. Chem. B 118: 1775-1783 (2014)CrossRefPubMedGoogle Scholar
  45. Lee D, Lee J, Hong M-G, Lee B-H, Kim Y-M, Chang P-S, Kim Y, Yoo S-H. Optimization of leucrose production by dextransucrase from Streptococcus mutans and its application as an adipogenesis regulator. J. Funct. Food. 39: 238-244 (2017a)CrossRefGoogle Scholar
  46. Lee Y-S, Woo J-B, Ryu S-I, Moon S-K, Han NS, Lee S-B. Glucosylation of flavonol and flavanones by Bacillus cyclodextrin glucosyltransferase to enhance their solubility and stability. Food Chem. 229: 75-83 (2017b)CrossRefPubMedGoogle Scholar
  47. Lehmann U, Robin F. Slowly digestible starch - its structure and health implications: a review. Trends Food Sci. Technol. 18: 346-355 (2007)CrossRefGoogle Scholar
  48. Letona CAM, Park C-S, Kim Y-R. Amylosucrase-mediated β-carotene encapsulation in amylose microparticles. Biotechnol. Prog. 33: 1640-1646 (2017)CrossRefPubMedGoogle Scholar
  49. Letona CAM, Luo K, Jeong K-B, Adra HJ, Park C-S, Kim Y-R. Effect of lecithin on the spontaneous crystallization of enzymatically synthesized short-chain amylose molecules into spherical microparticles. Polymers 11: 264 (2019)CrossRefPubMedCentralGoogle Scholar
  50. Li D, Park JH, Park JT, Park CS, Park KH. Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima maltosyltransferase. J. Agric. Food Chem. 52: 2561-2567 (2004)CrossRefPubMedGoogle Scholar
  51. Lim M-C, Seo D-H, Jung J-H, Park C-S, Kim Y-R. Enzymatic synthesis of amylose nanocomposite microbeads using amylosucrase from Deinococcus geothermalis. RSC Adv. 4: 26421-26424 (2014)CrossRefGoogle Scholar
  52. Lim M-C, Lee G-H, Ngoc Huynh DT, Morales Letona CA, Seo D-H, Park C-S, Kim Y-R. Amylosucrase-mediated synthesis and self-assembly of amylose magnetic microparticles. RSC Adv. 5: 36088-36091 (2015)CrossRefGoogle Scholar
  53. Lim M-C, Lee G-H, Huynh DTN, Hong C-E, Park S-Y, Jung J-Y, Park C-S, Ko S, Kim Y-R. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk. Colloid Surf. B-Biointerfaces 145: 854-861 (2016a)CrossRefGoogle Scholar
  54. Lim M-C, Park K-H, Choi J-H, Lee D-H, Letona CAM, Baik M-Y, Park C-S, Kim Y-R. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase. Carbohydr. Polym. 151: 606-613 (2016b)CrossRefPubMedGoogle Scholar
  55. Liu M, Wang S, Sun T, Su J, Zhang Y, Yue J, Sun Z. Insight into the structure, dynamics and the unfolding property of amylosucrases: Implications of rational engineering on thermostability. PLos One 7: e40441 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  57. Luo K, Jeong K-B, Park C-S, Kim Y-R. Biosynthesis of superparamagnetic polymer microbeads via simple precipitation of enzymatically synthesized short-chain amylose. Carbohydr. Polym. 181: 818-824 (2018a)CrossRefPubMedGoogle Scholar
  58. Luo K, Jeong K-B, You S-M, Lee D-H, Jung J-Y, Kim Y-R. Surface-engineered starch magnetic microparticles for highly effective separation of a broad range of bacteria. ACS Sustain. Chem. Eng. 6: 13524-13531 (2018b)CrossRefGoogle Scholar
  59. Luo K, Jeong K-B, You S-M, Lee D-H, Kim Y-R. Molecular rearrangement of glucans from natural starch to form size-controlled functional magnetic polymer beads. J. Agric. Food Chem. 66: 6806-6813 (2018c)CrossRefPubMedGoogle Scholar
  60. Luo K, Park K-H, Lee D-H, Hong C-E, Song Y-W, Yoo S-H, Kim Y-R. Self-assembly kinetics of debranched short-chain glucans from waxy maize starch to form spherical microparticles and its applications. Colloid. Surf. B-Biointerfaces 176: 352-359 (2019)CrossRefGoogle Scholar
  61. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavromatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE 2: e955 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  62. Malbert Y, Pizzut-Serin S, Massou S, Cambon E, Laguerre S, Monsan P, Lefoulon F, Morel S, André I, Remaud-Simeon M. Extending the structural diversity of α-flavonoid glycosides with engineered glucansucrases. Carbohydr. Polym. 6: 2282-2291 (2014)Google Scholar
  63. Mirza O, Skov LK, Remaud-Simeon M, Potocki de Montalk G, Albenne C, Monsan P, Gajhede M. Crystal structures of amylosucrase from Neisseria polysaccharea in complex with d-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40: 9032-9039 (2001)CrossRefPubMedGoogle Scholar
  64. Moon YH, Kim G, Lee JH, Jin XJ, Kim DW, Kim D. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. J. Mol. Catal. B-Enzym. 40: 1-7 (2006)CrossRefGoogle Scholar
  65. Moon Y, Nam S, Kang J, Kim YM, Lee JH, Kang HK, Breton V, Jun WJ, Park KD, Kimura A, Kim D. Enzymatic synthesis and characterization of arbutin glucosides using glucansucrase from Leuconostoc mesenteroides B-1299CB. Appl. Microbiol. Biotechnol. 77: 559-567 (2007)CrossRefPubMedGoogle Scholar
  66. Moulis C, André I, Remaud-Simeon M. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell. Mol. Life Sci. 73: 2661-2679 (2016)CrossRefPubMedGoogle Scholar
  67. Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ. Leuconostoc dextransucrase and dextran: production, properties and applications. J. Chem. Technol. Biotechnol. 80: 845-860 (2005)CrossRefGoogle Scholar
  68. Nam SM, Kim HR, Choi SJ, Park C-S, Moon TW. Effects of temperature-cycled retrogradation on properties of amylosucrase-treated waxy corn starch. Cereal Chem. 95: 555-563 (2018)CrossRefGoogle Scholar
  69. Okada G, Hehre EJ. New studies on amylosucrase, a bacterial α-D-glucosylase that directly converts sucrose to a glycogen-like α-glucan. J. Biol. Chem. 249: 126-135 (1974)PubMedGoogle Scholar
  70. Overwin H, Wray V, Hofer B. Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides. J. Biotechnol. 211: 103-106 (2015a)CrossRefPubMedGoogle Scholar
  71. Overwin H, Wray V, Hofer B. Flavonoid glucosylation by non-Leloir glycosyltransferases: formation of multiple derivatives of 3,5,7,3′,4′-pentahydroxyflavane stereoisomers. Appl. Microbiol. Biotechnol. 99: 9565-9576 (2015b)CrossRefPubMedGoogle Scholar
  72. Overwin H, Wray V, Seeger M, Sepúlveda-Boza S, Hofer B. Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. J. Biotechnol. 233: 121-128 (2016)CrossRefPubMedGoogle Scholar
  73. Pace CN. Measuring and increasing protein stability. Trends in Biotechnol. 8: 93-98 (1990)CrossRefGoogle Scholar
  74. Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ, Park JS, Cha J. Substrate specificity and transglycosylation catalyzed by a thermostable β-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. Microbiol. Biotechnol. 69: 411-422 (2005)CrossRefPubMedGoogle Scholar
  75. Park H, Choi K, Park YD, Park CS, Cha J. Enzymatic synthesis of polyphenol glycosides by amylosucrase. J. Life Sci. 21: 1631-1635 (2011)CrossRefGoogle Scholar
  76. Park H, Kim J, Park JH, Baek NI, Park CS, Lee HS, Cha J. Bioconversion of piceid to piceid glucoside using amylosucrase from Alteromonas macleodii deep ecotype. J. Microbiol. Biotechnol. 22: 1698-1704 (2012)CrossRefPubMedGoogle Scholar
  77. Park M-O, Lee B-H, Lim E, Lim JY, Kim Y, Park C-S, Lee HG, Kang H-K, Yoo S-H. Enzymatic process for high-yield turanose production and its potential property as an adipogenesis regulator. J. Agric. Food Chem. 64: 4758-4764 (2016)CrossRefPubMedGoogle Scholar
  78. Park M-O, Chandrasekaran M, Yoo S-H. Expression, purification, and characterization of a novel amylosucrase from Neisseria subflava. Int. J. Biol. Macromol. 109: 160-166 (2018a)CrossRefPubMedGoogle Scholar
  79. Park S, Moon K, Park CS, Jung DH, Cha J. Synthesis of aesculetin and aesculin glycosides using engineered Escherichia coli expressing Neisseria polysaccharea amylosucrase. J. Microbiol. Biotechnol. 28: 566-570 (2018b)PubMedGoogle Scholar
  80. Perez-Cenci M, Salerno GL. Functional characterization of Synechococcus amylosucrase and fructokinase encoding genes discovers two novel actors on the stage of cyanobacterial sucrose metabolism. Plant Sci. 224: 95-102 (2014)CrossRefPubMedGoogle Scholar
  81. Pizzut-Serin S, Potocki-Véronèse G, van der Veen BA, Albenne C, Monsan P, Remaud-Simeon M. Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Lett. 579: 1405-1410 (2005)CrossRefPubMedGoogle Scholar
  82. Potocki de Montalk G, Remaud-Simeon M, Willemot R-M, Sarçabal P, Planchot V, Monsan P. Amylosucrase from Neisseria polysaccharea: novel catalytic properties. FEBS Lett. 471: 219-223 (2000b)CrossRefPubMedGoogle Scholar
  83. Potocki de Montalk G, Remaud-Simeon M, Willemot RM, Planchot V, Monsan P. (1999) Sequence analysis of the gene encoding amylosucrase form Neisseria polysaccharea and characterization of the recombinant enzyme. J. Bacteriol. 181: 375-381Google Scholar
  84. Potocki de Montalk G, Remaud-Simeon M, Willemot R-M, Monsan P. (2000a) Characterisation of the activator effect of glycogen on amylosucrase from Neisseria polysaccharea. FEMS Microbiol. Lett. 186: 103-108CrossRefPubMedGoogle Scholar
  85. Potocki-Veronese G, Putaux J-L, Dupeyre D, Albenne C, Remaud-Siméon M, Monsan P, Buleon A. Amylose synthesized in vitro by amylosucrase: Morphology, structure, and properties. Biomacromolecules 6: 1000-1011 (2005)CrossRefPubMedGoogle Scholar
  86. Rha C-S, Choi J-M, Jung YS, Kim E-R, Ko MJ, Seo D-H, Kim D-O, Park C-S. HHigh-efficiency enzymatic production of α-isoquercitrin glucosides by amylosucrase from Deinococcus geothermalis. Enzyme Microb. Technol. 120: 84-90 (2019a)CrossRefPubMedGoogle Scholar
  87. Rha C-S, Jung YS, Seo D-H, Kim D-O, Park C-S. Site-specific α-glycosylation of hydroxyflavones and hydroxyflavanones by amylosucrase from Deinococcus geothermalis. Enzyme Microb. Technol. 129: 109361 (2019b)CrossRefPubMedGoogle Scholar
  88. Rolland-Sabaté A, Colonna P, Potocki-Véronèse G, Monsan P, Planchot V. Elongation and insolubilisation of α-glucans by the action of Neisseria polysaccharea amylosucrase. J. Cereal Sci. 40: 17-30 (2004)CrossRefGoogle Scholar
  89. Ryu J-H, Lee B-H, Seo D, Baik M-Y, Park C-S, Wang R, Yoo S-H. Production and characterization of digestion-resistantstarch by the reaction of Neisseria polysaccharea amylosucrase. Starch 62: 221-228 (2010)CrossRefGoogle Scholar
  90. Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch-a review. Compr. Rev. Food. Sci. Food Saf. 5: 1-17 (2006)CrossRefGoogle Scholar
  91. Seo DH, Jung JH, Ha SJ, Yoo SH, Kim TJ, Cha J, Park CS. Molecular cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity. pp. 125-140. In: Carbohydrate-active enzyme structure, function and application. Park KH (ed). CRC press, Boca Raton (2008)CrossRefGoogle Scholar
  92. Seo DH, Jung JH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Park CS. Highly selective biotransformation of arbutin to arbutin-α-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B-Enzym. 60: 113-118 (2009)CrossRefGoogle Scholar
  93. Seo DH, Choi HC, Kim HH, Yoo SH, Park CS. Functional expression of amylosucrase, a glucan-synthesizing enzyme, from Arthrobacter chlorophenolicus A6. J. Microbiol. Biotechnol. 22: 1253-1257 (2012a)CrossRefPubMedGoogle Scholar
  94. Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, Baek NI, Yoo SH, Park CS. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197 (2012b)CrossRefPubMedGoogle Scholar
  95. Seo D-H, Jung J-H, Jung D-H, Park S, Yoo S-H, Kim Y-R, Park C-S. An unusual chimeric amylosucrase generated by domain-swapping mutagenesis. Enzyme Microb. Technol. 86: 7-16 (2016)CrossRefPubMedGoogle Scholar
  96. Seo D-H, Jung J-H, Park C-S. Improved polymerization activity of Deinococcus geothermalis amylosucrase by semi-rational design: Effect of loop flexibility on the polymerization reaction. Int. J. Biol. Macromol. 130: 177-185 (2019)CrossRefPubMedGoogle Scholar
  97. Shibuya T, Mandai T, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y. Production of turanose by cyclomaltodextrin glucanotransferase from Bacillus stearothermophilus. J. Appl. Glycosci. 51: 223-227 (2004)CrossRefGoogle Scholar
  98. Shin SI, Choi HJ, Chung KM, Hamaker BR, Park KH, Moon TW. Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chem. 81: 404-408 (2004)CrossRefGoogle Scholar
  99. Shin HJ, Choi SJ, Park CS, Moon TW. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydr. Polym. 82: 489-497 (2010)CrossRefGoogle Scholar
  100. Skov LK, Mirza O, Henriksen A, De Montalk GP, Remaud-Simeon M, Sarçabal P, Willemot R-M, Monsan P, Gajhede M. Amylosucrase, a glucan-synthesizing enzyme from the α-amylase family. J. Biol. Chem. 276: 25273-25278 (2001)CrossRefPubMedGoogle Scholar
  101. Skov LK, Mirza O, Sprogøe D, Dar I, Remaud-Simeon M, Albenne C, Monsan P, Gajhede M. Oligosaccharide and sucrose complexes of amylosucrase: structural implications for the polymerase activity. J. Biol. Chem. 277: 47741-47747 (2002)CrossRefPubMedGoogle Scholar
  102. Skov LK, Pizzut-Serin S, Remaud-Simeon M, Ernst HA, Gajhede M, Mirza O. The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology. Acta Crystallogr. F-Struct. Biol. Commun. 69: 973-978 (2013)CrossRefGoogle Scholar
  103. Wang R, Bae J-S, Kim J-H, Kim B-S, Yoon S-H, Park C-S, Yoo S-H. Development of an efficient bioprocess for turanose production by sucrose isomerisation reaction of amylosucrase. Food Chem. 132: 773-779 (2012)CrossRefGoogle Scholar
  104. Wang Y, Xu W, Bai Y, Zhang T, Jiang B, Mu W. Identification of an α-(1,4)-glucan-synthesizing amylosucrase from Cellulomonas carboniz T26. J. Agric. Food Chem. 65: 2110-2119 (2017)CrossRefPubMedGoogle Scholar
  105. Yalkowsky SH, Dannenfelser RM. Aquasol database of aqueous solubility. Vol. 189. College of Pharmacy, University of Arizona, Tucson (1992)Google Scholar
  106. Yamada M, Tanabe F, Arai N, Mitsuzumi H, Miwa Y, Kubota M, Chaen H, Kibata M. Bioavailability of glucosyl hesperidin in rats. Biosci. Biotechnol. Biochem. 70: 1386-1394 (2006)CrossRefPubMedGoogle Scholar
  107. Yoo HJ, Kim HR, Choi SJ, Park CS, Moon TW. Characterisation of low-digestible starch fractions isolated from amylosucrase-modified waxy corn starch. Int. J. Food Sci. Technol. 53: 557-563 (2018)CrossRefGoogle Scholar
  108. Yu S, Wang Y, Tian Y, Xu W, Bai Y, Zhang T, Mu W. Highly efficient biosynthesis of α-arbutin from hydroquinone by an amylosucrase from Cellulomonas carboniz. Process Biochem. 68: 93-99 (2018)CrossRefGoogle Scholar
  109. Zhang G, Ao Z, Hamaker BR. Nutritional property of endosperm starches from maize mutants: A parabolic relationship between slowly digestible starch and amylopectin fine structure. J. Agric. Food Chem. 56: 4686-4694 (2008a)CrossRefPubMedGoogle Scholar
  110. Zhang G, Sofyan M, Hamaker BR. Slowly digestible state of starch: Mechanism of slow digestion property of gelatinized maize starch. J. Agric. Food Chem. 56: 4695-4702 (2008b)CrossRefPubMedGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Food Science and Technology, College of Agriculture and Life SciencesJeonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research CenterSejong UniversitySeoulRepublic of Korea
  3. 3.Department of Food Science and TechnologySeoul National University of Science and TechnologySeoulRepublic of Korea
  4. 4.Graduate School of Biotechnology and Institute of Life Science and ResourcesKyung Hee UniversityYonginRepublic of Korea

Personalised recommendations