Mechanisms of action of coffee bioactive components on lipid metabolism

  • Renalison Farias-Pereira
  • Cheon-Seok Park
  • Yeonhwa ParkEmail author


Coffee consumption is associated with reduced risk of metabolic syndrome, obesity and diabetes, which may be related to the effects of coffee and its bioactive components on lipid metabolism. Coffee contains caffeine, a known neuromodulator that acts as an adenosine receptor antagonist, as well as other components, such as chlorogenic acids, trigonelline, cafestol and kahweol. Thus, this review discusses the up-to-date knowledge of mechanisms of action of coffee and its bioactive compounds on lipid metabolism. Although there is evidence that coffee and/or its bioactive compounds regulate transcription factors (e.g. peroxisome proliferator-activated receptors and sterol regulatory element binding proteins) and enzymes (e.g. AMP-activated protein kinase) involved in lipogenesis, lipid uptake, transport, fatty acid β-oxidation and/or lipolysis, needs for the understanding of coffee and its effects on lipid metabolism in humans remain to be answered.


Alkaloid Phenolic acid Cholesterol Obesity Fat 



This work was financially supported by the Brazilian National Counsel of Technological and Scientific Development [CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico]. The authors thank Mr. Joshua Barsczewski for his assistance editing this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest to disclose.


  1. Ameca GM, Cerrilla MEO, Córdoba PZ, Cruz AD, Hernández MS, Haro JH. Chemical composition and antioxidant capacity of coffee pulp. Ciênc. Agrotec. 42: 307-313 (2018)CrossRefGoogle Scholar
  2. Baek J-H, Kim N-J, Song J-K, Chun K-H. Kahweol inhibits lipid accumulation and induces glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep. 50: 566-571 (2017)CrossRefGoogle Scholar
  3. Boergesen M, Pedersen TA, Gross B, van Heeringen SJ, Hagenbeek D, Bindesboll C, Caron S, Lalloyer F, Steffensen KR, Nebb HI, Gustafsson J-A, Stunnenberg HG, Staels B, Mandrup S. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites. Mol. Cell. Biol. 32: 852-867 (2012)CrossRefGoogle Scholar
  4. Calvo D, Gomez-Coronado D, Suarez Y, Lasuncion MA, Vega MA. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J. Lipid Res. 39: 777-788 (1998)Google Scholar
  5. Caria CRP, Deoliveira CC, Gotardo ÉFM, Desouza VT, Rocha T, Macedo JA, Carvalho P, Ribeiro ML, Gambero A (2014) Caffeinated and decaffeinated instant coffee consumption partially reverses high-fat diet-induced metabolic alterations in mice. Food Res. Int. 61: 120-126CrossRefGoogle Scholar
  6. Caron A, Richard D, Laplante M. The roles of mTOR complexes in lipid metabolism. Annu. Rev. Nutr. 35: 321-348 (2015)CrossRefGoogle Scholar
  7. Carrageta DF, Dias TR, Alves MG, Oliveira PF, Monteiro MP, Silva BM. Anti-obesity potential of natural methylxanthines. J. Funct. Foods 43: 84-94 (2018)CrossRefGoogle Scholar
  8. Cha KH, Song D-G, Kim SM, Pan C-H. Inhibition of gastrointestinal lipolysis by green tea, coffee, and gomchui (Ligularia fischeri) tea polyphenols during simulated digestion. J. Agric. Food Chem. 60: 7152-7157 (2012)CrossRefGoogle Scholar
  9. Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 48: 937-943 (2010)CrossRefGoogle Scholar
  10. Choi B-K, Park S-B, Lee D-R, Lee HJ, Jin Y-Y, Yang SH, Suh J-W. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac. J. Trop. Med. 9: 635-643 (2016)CrossRefGoogle Scholar
  11. Chung S, Kim YJ, Yang SJ, Lee Y, Lee M. Nutrigenomic functions of PPARs in obesogenic environments. PPAR Res. 2016: 4794576 (2016)CrossRefGoogle Scholar
  12. Clifford MN, Jaganath IB, Ludwig IA, Crozier A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 34: 1391-1421 (2017)CrossRefGoogle Scholar
  13. Cruz RG, Vieira TMFS, Lira SP. Potential antioxidant of brazilian coffee from the region of Cerrado. Food Sci. Technol. 38: 447-453 (2018)CrossRefGoogle Scholar
  14. de Azevedo ABA, Mazzafera P, Mohamed RS, Demelo SABV, Kieckbusch TG. Extraction of caffeine, chlorogenic acids and lipids from green coffee beans using supercritical carbon dioxide and co-solvents. Brazilian J. Chem. Eng. 25: 543-552 (2008)CrossRefGoogle Scholar
  15. Egawa T, Hamada T, Ma X, Karaike K, Kameda N, Masuda S, Iwanaka N, Hayashi T. Caffeine activates preferentially α1-isoform of 5′AMP-activated protein kinase in rat skeletal muscle. Acta Physiol. 201: 227-238 (2011)CrossRefGoogle Scholar
  16. Farah A. Coffee constituents, pp. 21-58. In: Coffee: emerging health effects and disease prevention. Chu Y-F (ed). John Wiley & Sons, Ltd., New York, NY, USA. (2012)CrossRefGoogle Scholar
  17. Farias-Pereira R, Oshiro J, Kim K-H, Park Y. Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. J. Funct. Foods 48: 586-593 (2018)CrossRefGoogle Scholar
  18. Flanagan J, Bily A, Rolland Y, Roller M. Lipolytic activity of Svetol(R), a decaffeinated green coffee bean extract. Phytother. Res. 28: 946-948 (2014)CrossRefGoogle Scholar
  19. Godos J, Pluchinotta FR, Marventano S, Buscemi S, Li Volti G, Galvano F, Grosso G. Coffee components and cardiovascular risk: beneficial and detrimental effects. Int. J. Food Sci. Nutr. 65: 925-936 (2014)CrossRefGoogle Scholar
  20. Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu. Rev. Nutr. 37: 131-156 (2017)CrossRefGoogle Scholar
  21. Hamden K, Mnafgui K, Amri Z, Aloulou A, Elfeki A. Inhibition of key digestive enzymes related to diabetes and hyperlipidemia and protection of liver-kidney functions by trigonelline in diabetic rats. Sci. Pharm. 81: 233-246 (2013)CrossRefGoogle Scholar
  22. Harpaz E, Tamir S, Weinstein A, Weinstein Y. The effect of caffeine on energy balance. J. Basic Clin. Physiol. Pharmacol. 28(1): 1-10 (2017)CrossRefGoogle Scholar
  23. Huang K, Liang X, Zhong Y, He W, Wang Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J. Sci. Food Agric. 95: 1903-1910 (2015)CrossRefGoogle Scholar
  24. Jeon T-I, Esquejo RM, Roqueta-Rivera M, Phelan PE, Moon Y-A, Govindarajan SS, Esau CC, Osborne TF. An SREBP-responsive microRNA operon contributes to a regulatory loop for intracellular lipid homeostasis. Cell Metab. 18: 51-61 (2013)CrossRefGoogle Scholar
  25. Jeszka-Skowron M, Sentkowska A, Pyrzyńska K, De Peña MP. Chlorogenic acids, caffeine content and antioxidant properties of green coffee extracts: influence of green coffee bean preparation. Eur. Food Res. Technol. 242: 1403-1409 (2016)CrossRefGoogle Scholar
  26. Jia H, Aw W, Egashira K, Takahashi S, Aoyama S, Saito K, Kishimoto Y, Kato H. Coffee intake mitigated inflammation and obesity-induced insulin resistance in skeletal muscle of high-fat diet-induced obese mice. Genes Nutr. 9: 389 (2014)CrossRefGoogle Scholar
  27. Kamiyama M, Moon J-K, Jang HW, Shibamoto T. Role of degradation products of chlorogenic acid in the antioxidant activity of roasted coffee. J. Agric. Food Chem. 63: 1996-2005 (2015)CrossRefGoogle Scholar
  28. Kim J, Jang JY, Cai J, Kim Y, Shin K, Choi E-K, Lee S-P, Kim J-C, Kim T-S, Jeong H-S, Kim Y-B. Ethanol extracts of unroasted Coffea canephora robusta beans suppress adipogenesis in preadipocytes and fat accumulation in rats fed a high-fat diet. Food Sci. Biotechnol. 23: 2029-2035 (2014)CrossRefGoogle Scholar
  29. Kogure A, Sakane N, Takakura Y, Umekawa T, Yoshioka K, Nishino H, Yamamoto T, Kawada T, Yoshikawa T, Yoshida T. Effects of caffeine on the uncoupling protein family in obese yellow KK mice. Clin. Exp. Pharmacol. Physiol. 29: 391-394 (2002)CrossRefGoogle Scholar
  30. Lally JS V, Jain SS, Han XX, Snook LA, Glatz JFC, Luiken JJFP, McFarlan J, Holloway GP, Bonen A. Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice. Acta Physiol. 205: 71-81 (2012)CrossRefGoogle Scholar
  31. Lee KJ, Jeong HG. Protective effects of kahweol and cafestol against hydrogen peroxide-induced oxidative stress and DNA damage. Toxicol. Lett. 173: 80-87 (2007)CrossRefGoogle Scholar
  32. Li S-Y, Chang C-Q, Ma F-Y, Yu C-L. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-α in golden hamsters fed on high fat diet. Biomed. Environ. Sci. 22: 122-129 (2009)CrossRefGoogle Scholar
  33. Lima CS, Spindola DG, Bechara A, Garcia DM, Palmeira-Dos-Santos C, Peixoto-da-Silva J, Erustes AG, Michelin LFG, Pereira GJS, Smaili SS, Paredes-Gamero E, Calgarotto AK, Oliveira CR, Bincoletto C. Cafestol, a diterpene molecule found in coffee, induces leukemia cell death. Biomed. Pharmacother. 92: 1045-1054 (2017)CrossRefGoogle Scholar
  34. Liu C-W, Tsai H-C, Huang C-C, Tsai C-Y, Su Y-B, Lin M-W, Lee K-C, Hsieh Y-C, Li T-H, Huang S-F, Yang Y-Y, Hou M-C, Lin H-C, Lee F-Y, Lee S-D. Effects and mechanisms of caffeine to improve immunological and metabolic abnormalities in diet-induced obese rats. Am. J. Physiol. Metab. 314: E433-E447 (2017)Google Scholar
  35. Liu J, Peng Y, Yue Y, Shen P, Park Y. Epigallocatechin-3-gallate reduces fat accumulation in Caenorhabditis elegans. Prev. Nutr. food Sci. 23: 214-219 (2018)CrossRefGoogle Scholar
  36. Ma Y, Gao M, Liu D. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharm. Res. 32: 1200-1209 (2015)CrossRefGoogle Scholar
  37. Marechal L, Laviolette M, Rodrigue-Way A, Sow B, Brochu M, Caron V, Tremblay A. The CD36-PPARgamma pathway in metabolic disorders. Int. J. Mol. Sci. 19: E1529 (2018)CrossRefGoogle Scholar
  38. Martinez-Saez N, Ullate M, Martin-Cabrejas MA, Martorell P, Genovés S, Ramon D, del Castillo MD. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 150: 227-234 (2014)CrossRefGoogle Scholar
  39. Massafra V, van Mil SWC. Farnesoid X receptor: a “homeostat” for hepatic nutrient metabolism. Biochim. Biophys. acta. Mol. Basis Dis. 1864: 45-59 (2018)CrossRefGoogle Scholar
  40. Mathew TS, Ferris RK, Downs RM, Kinsey ST, Baumgarner BL. Caffeine promotes autophagy in skeletal muscle cells by increasing the calcium-dependent activation of AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 453: 411-418 (2014)CrossRefGoogle Scholar
  41. Mellbye FB, Jeppesen PB, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: studies in vitro. J. Nat. Prod. 78: 2447-2451 (2015)CrossRefGoogle Scholar
  42. Mellbye FB, Jeppesen PB, Shokouh P, Laustsen C, Hermansen K, Gregersen S. Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J. Nat. Prod. 80: 2353-2359 (2017)CrossRefGoogle Scholar
  43. Mohamadi N, Sharififar F, Pournamdari M, Ansari M. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. J. Diet. Suppl. 15: 207-222 (2018)CrossRefGoogle Scholar
  44. Mougios V, Ring S, Petridou A, Nikolaidis MG. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum. J. Appl. Physiol. 94: 476-484 (2003)CrossRefGoogle Scholar
  45. Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6 J mice. Am. J. Physiol. - Endocrinol. Metab. 300: E122-E133 (2010)CrossRefGoogle Scholar
  46. Nakayama T, Funakoshi-Tago M, Tamura H. Coffee reduces KRAS expression in Caco-2 human colon carcinoma cells via regulation of miRNAs. Oncol. Lett. 14: 1109-1114 (2017)CrossRefGoogle Scholar
  47. Narita Y, Iwai K, Fukunaga T, Nakagiri O. Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil. Biosci. Biotechnol. Biochem. 76: 2329-2331 (2012)CrossRefGoogle Scholar
  48. Noh SK, Koo SI, Wang S. Epigallocatechin gallate and caffeine differentially inhibit the intestinal absorption of cholesterol and fat in ovariectomized rats. J. Nutr. 136: 2791-2796 (2006)CrossRefGoogle Scholar
  49. Oh SH, Hwang YP, Choi JH, Jin SW, Lee GH, Han EH, Chung YH, Chung YC, Jeong HG. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Food Chem. Toxicol. 121: 326-335 (2018)CrossRefGoogle Scholar
  50. Ong KW, Hsu A, Tan BKH. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 85: 1341-1351 (2013)CrossRefGoogle Scholar
  51. Ontawong A, Boonphang O, Pasachan T, Duangjai A, Pongchaidecha A, Phatsara M, Jinakote M, Amornlerdpison D, Srimaroeng C. Hepatoprotective effect of coffee pulp aqueous extract combined with simvastatin against hepatic steatosis in high-fat diet-induced obese rats. J. Funct. Foods 54: 568-577 (2019a)CrossRefGoogle Scholar
  52. Ontawong A, Duangjai A, Muanprasat C, Pasachan T, Pongchaidecha A, Amornlerdpison D, Srimaroeng C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 52: 187-197 (2019b)CrossRefGoogle Scholar
  53. Palatini P, Benetti E, Mos L, Garavelli G, Mazzer A, Cozzio S, Fania C, Casiglia E. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur. J. Epidemiol. 30: 209-217 (2015)CrossRefGoogle Scholar
  54. Park I, Ochiai R, Ogata H, Kayaba M, Hari S, Hibi M, Katsuragi Y, Satoh M, Tokuyama K. Effects of subacute ingestion of chlorogenic acids on sleep architecture and energy metabolism through activity of the autonomic nervous system: a randomised, placebo-controlled, double-blinded cross-over trial. Br. J. Nutr. 117: 979-984 (2017)CrossRefGoogle Scholar
  55. Peng S-G, Pang Y-L, Zhu Q, Kang J-H, Liu M-X, Wang Z. Chlorogenic acid functions as a novel agonist of PPARγ2 during the differentiation of mouse 3T3-L1 preadipocytes. Biomed Res. Int. 2018: 8594767 (2018)Google Scholar
  56. Poole R, Kennedy OJ, Roderick P, Fallowfield JA, Hayes PC, Parkes J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 359: j5024 (2017)CrossRefGoogle Scholar
  57. Post SM, de Wit EC, Princen HM. Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler. Thromb. Vasc. Biol. 17: 3064-3070 (1997)CrossRefGoogle Scholar
  58. Proenca ARG, Sertie RAL, Oliveira AC, Campana AB, Caminhotto RO, Chimin P, Lima FB. New concepts in white adipose tissue physiology. Braz J. Med. Biol. Res. 47: 192-205 (2014)CrossRefGoogle Scholar
  59. Quan HY, Kim DY, Chung SH. Caffeine attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. BMB Rep. 46: 207-212 (2013)CrossRefGoogle Scholar
  60. Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin. Chem. Lab. Med. 52: 1695-1727 (2014)CrossRefGoogle Scholar
  61. Reddy JK, Hashimoto T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu. Rev. Nutr. 21: 193-230 (2001)CrossRefGoogle Scholar
  62. Reis CEG, Dórea JG, da Costa THM. Effects of coffee consumption on glucose metabolism: a systematic review of clinical trials. J. Tradit. Complement. Med. 9: 184-191 (2019)CrossRefGoogle Scholar
  63. Reis CEG, Paiva CLRDS, Amato AA, Lofrano-Porto A, Wassell S, Bluck LJC, Dorea JG, da Costa THM. Decaffeinated coffee improves insulin sensitivity in healthy men. Br. J. Nutr. 119: 1029-1038 (2018)CrossRefGoogle Scholar
  64. Rendon MY, Dos Santos Scholz MB, Bragagnolo N. Physical characteristics of the paper filter and low cafestol content filter coffee brews. Food Res. Int. 108: 280-285 (2018)CrossRefGoogle Scholar
  65. Ricketts M-L, Boekschoten M V, Kreeft AJ, Hooiveld GJEJ, Moen CJA, Muller M, Frants RR, Kasanmoentalib S, Post SM, Princen HMG, Porter JG, Katan MB, Hofker MH, Moore DD. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol. Endocrinol. 21: 1603-1616 (2007)CrossRefGoogle Scholar
  66. Riedel A, Lang R, Rohm B, Rubach M, Hofmann T, Somoza V. Structure-dependent effects of pyridine derivatives on mechanisms of intestinal fatty acid uptake: regulation of nicotinic acid receptor and fatty acid transporter expression. J. Nutr. Biochem. 25: 750-757 (2014)CrossRefGoogle Scholar
  67. Robertson TM, Clifford MN, Penson S, Williams P, Robertson MD. Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms. Br. J. Nutr. 119: 792-800 (2018)CrossRefGoogle Scholar
  68. Roshan H, Nikpayam O, Sedaghat M, Sohrab G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: a randomised clinical trial. Br. J. Nutr. 119:250-258 (2018)CrossRefGoogle Scholar
  69. Saeed M, Naveed M, BiBi J, Ali Kamboh A, Phil L, Chao S. Potential nutraceutical and food additive properties and risks of coffee: a comprehensive overview. Crit. Rev. Food Sci. Nutr. (2019). Google Scholar
  70. Santos RMM, Lima DRA. Coffee consumption, obesity and type 2 diabetes: a mini-review. Eur. J. Nutr. 55: 1345-1358 (2016)CrossRefGoogle Scholar
  71. Sarria B, Martinez-Lopez S, Sierra-Cinos JL, Garcia-Diz L, Mateos R, Bravo-Clemente L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur. J. Nutr. 57: 269-278 (2018)CrossRefGoogle Scholar
  72. Schnuck JK, Gould LM, Parry HA, Johnson MA, Gannon NP, Sunderland KL, Vaughan RA. Metabolic effects of physiological levels of caffeine in myotubes. J. Physiol. Biochem. 74: 35-45 (2018)CrossRefGoogle Scholar
  73. Sharma L, Lone NA, Knott RM, Hassan A, Abdullah T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6 J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 121: 283-296 (2018)CrossRefGoogle Scholar
  74. Shimoda H, Seki E, Aitani M. Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice. BMC Complement. Altern. Med. 6: 9 (2006)CrossRefGoogle Scholar
  75. Shokouh P, Jeppesen PB, Hermansen K, Nørskov NP, Laustsen C, Jacques Hamilton-Dutoit S, Qi H, Stødkilde-Jørgensen H, Gregersen S. A combination of coffee compounds shows insulin-sensitizing and hepatoprotective effects in a rat model of diet-induced metabolic syndrome. Nutrients 10: 6 (2018)CrossRefGoogle Scholar
  76. Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay B-H, Summers SA, Newgard CB, Yen PM. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59: 1366-1380 (2014)CrossRefGoogle Scholar
  77. Su S-H, Shyu H-W, Yeh Y-T, Chen K-M, Yeh H, Su S-J. Caffeine inhibits adipogenic differentiation of primary adipose-derived stem cells and bone marrow stromal cells. Toxicol. In Vitro 27: 1830-1837 (2013)CrossRefGoogle Scholar
  78. Sudeep HV, Venkatakrishna K, Patel D, Shyamprasad K. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement. Altern. Med. 16: 274 (2016)CrossRefGoogle Scholar
  79. Takahashi K, Yanai S, Shimokado K, Ishigami A. Coffee consumption in aged mice increases energy production and decreases hepatic mTOR levels. Nutrition 38: 1-8 (2017)CrossRefGoogle Scholar
  80. Urgert R, Essed N, van der Weg G, Kosmeijer-Schuil TG, Katan MB. Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases. Am. J. Clin. Nutr. 65: 519-524 (1997)CrossRefGoogle Scholar
  81. van Cruchten STJ. Cafestol: a multi-faced compound kinetics and metabolic effects of cafestol in mice. PhD thesis, Wageningen University, Wageningen, NL. (2010)Google Scholar
  82. Vandenberghe C, St-Pierre V, Courchesne-Loyer A, Hennebelle M, Castellano C-A, Cunnane SC. Caffeine intake increases plasma ketones: an acute metabolic study in humans. Can. J. Physiol. Pharmacol. 95: 455-458 (2016)CrossRefGoogle Scholar
  83. Vignoli JA, Viegas MC, Bassoli DG, Benassi MT. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int. 61: 279-285 (2014)CrossRefGoogle Scholar
  84. Wang Z, Lam K-L, Hu J, Ge S, Zhou A, Zheng B, Zeng S, Lin S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 7: 579-588 (2019)CrossRefGoogle Scholar
  85. Wei Ong K, Hsu A, Tan BKH, Calbet JA. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: a contributor to the beneficial effects of coffee on diabetes. PLoS One 7: e32718 (2012)CrossRefGoogle Scholar
  86. Wu L, Meng J, Shen Q, Zhang Y, Pan S, Chen Z, Zhu L-Q, Lu Y, Huang Y, Zhang G. Caffeine inhibits hypothalamic A1R to excite oxytocin neuron and ameliorate dietary obesity in mice. Nat. Commun. 8: 15904 (2017)CrossRefGoogle Scholar
  87. Yang JS, Qi W, Farias-Pereira R, Choi S, Clark JM, Kim D, Park Y. Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food Chem. Toxicol. 125: 595-604 (2019)CrossRefGoogle Scholar
  88. Yoshinari O, Sato H, Igarashi K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats. Biosci. Biotechnol. Biochem. 73: 1033-1041 (2009)CrossRefGoogle Scholar
  89. Yue Y, Shen P, Xu Y, Park Y. p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. J. Sci. Food Agric. 99: 1190-1197 (2019)CrossRefGoogle Scholar
  90. Zhang S-J, Li Y-F, Wang G-E, Tan R-R, Tsoi B, Mao G-W, Zhai Y-J, Cao L-F, Chen M, Kurihara H, Wang Q, He R-R. Caffeine ameliorates high energy diet-induced hepatic steatosis: sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct. 6: 2578-2587 (2015)CrossRefGoogle Scholar
  91. Zheng G, Qiu Y, Zhang Q-F, Li D. Chlorogenic acid and caffeine in combination inhibit fat accumulation by regulating hepatic lipid metabolism-related enzymes in mice. Br. J. Nutr. 112: 1034-1040 (2014)CrossRefGoogle Scholar
  92. Zheng X, Dai W, Chen X, Wang K, Zhang W, Liu L, Hou J. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J. Biomed. Sci. 22: 105 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  1. 1.Department of Food ScienceUniversity of MassachusettsAmherstUSA
  2. 2.Department of Food Science & BiotechnologyKyung Hee UniversityYonginKorea

Personalised recommendations