Advertisement

TiO2 particles induce ER stress and apoptosis in human hepatoma cells, HepG2, in a particle size-dependent manner

  • Ha Na Song
  • Su Kyung Jang
  • Ok Kyung Hwang
  • Hong Jin Lee
  • Hyang Sook ChunEmail author
Article
  • 6 Downloads

Abstract

The cytotoxicity of TiO2 nanoparticles are well-known, but the particle size-dependent induction of ER stress and apoptosis by TiO2 in hepatocytes has not been elucidated clearly. In the present study, we investigated whether a fine TiO2 particle and two types of TiO2 nanoparticles induce ER stress and apoptosis differently in HepG2 cells. A particle size-dependent decrease in cell viability was observed after exposure to the TiO2 particles. The levels of ER stress-related proteins (BiP, CHOP, ATF6α, and p-PERK) were increased with decreasing particle size. TiO2 particles induced ER stress-mediated apoptosis in a particle size-dependent manner as seen by a decrease in the expression of Bcl-2, and increases in the expression of Bax, caspase-12, and cleaved caspase-3. These results indicated that the cytotoxicity produced by TiO2 particles was related to particle size, with smaller TiO2 nanoparticles producing greater toxic effects involving ER stress and apoptosis in the HepG2 cells.

Keywords

Apoptosis ER HepG2 Size-dependent TiO2 

Notes

Acknowledgements

This work was supported by the Bio-Synergy Research Project (NRF-2013M3A9C4078156) of the Ministry of Science and by the Chung-Ang University Graduate Research Scholarship.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

References

  1. Autrup H, Foldberg R, Deng F, Dang DA, Olesen P. Ag and TiO2 nanoparticles induce oxidative stress in A549 cells. Toxicol. Lett. 189: S181 (2009)CrossRefGoogle Scholar
  2. Banerjee A, Lang JY, Hung MC, Sengupta K, Banerjee SK, Baksi K, Banerjee DK. Unfolded protein response is required in nu/nu mice microvasculature for treating breast tumor with tunicamycin. J. Biol. Chem. 286: 29127–29138 (2011)CrossRefGoogle Scholar
  3. Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int. J. Mol. Sci. 14: 434–456 (2012)CrossRefGoogle Scholar
  4. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part. Fibre Toxicol. 5: 14 (2008)CrossRefGoogle Scholar
  5. Buford MC, Hamilton RF Jr, Holian A. A comparison of dispersing media for various engineered carbon nanoparticles. Part. Fibre Toxicol. 4: 6 (2007)CrossRefGoogle Scholar
  6. Chang X, Zhang Y, Tang M, Wang B. Health effects of exposure to nano-TiO2: a meta-analysis of experimental studies. Nanoscale Res. Lett. 8: 51 (2013)CrossRefGoogle Scholar
  7. Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 9: 1765–1774 (2013)CrossRefGoogle Scholar
  8. Dhawan A, Sarama V, Parmar D. Nanomaterials: a challenge for toxicologists. Nanotoxicology 3: 1–9 (2009)CrossRefGoogle Scholar
  9. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett. 357: 127–130 (2004)CrossRefGoogle Scholar
  10. Hong F, Zhao X, Chen M, Zhou Y, Ze Y, Wang L, Wang Y, Ge Y, Zhang Q, Ye L. TiO2 nanoparticles-induced apoptosis of primary cultured Sertoli cells of mice. J. Biomed. Mater. Res. A. 104: 124–135 (2016)CrossRefGoogle Scholar
  11. Julia S, Chris B, Karin B, Sarah P. Phenotypic characterization of mitochondria in breast cancer cells using morphology and texture properties. PerkinElmer, Inc., USA pp. 1–5 (2012)Google Scholar
  12. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci. Rep. 5: 10775 (2015)CrossRefGoogle Scholar
  13. Li P, Zhang L, Zhang M, Zhou M, Lin N. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction. J. Mol. Med. 37: 989–997 (2016)CrossRefGoogle Scholar
  14. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J. Hepatol. 54: 795–809 (2011)CrossRefGoogle Scholar
  15. Martin HL, Adams M, Higgins J, Bond J, Morrison EE, Bell SM, Warriner S, Nelson A, Tomlinson DC. High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers. PLoS One 9: e88338 (2014)CrossRefGoogle Scholar
  16. Michalak M. Quality control in the endoplasmic reticulum. Semin. Cell Dev. Biol. 21: 471 (2010)CrossRefGoogle Scholar
  17. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277: 34287–34294 (2002)Google Scholar
  18. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-ß. Nature 403: 98–103 (2000)CrossRefGoogle Scholar
  19. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 311: 622–627 (2006)CrossRefGoogle Scholar
  20. Niska K, Pyszka K, Tukaj C, Wozniak M, Radomski MW, Inkielewicz-Stepniak I. Titanium dioxide nanoparticles enhance production of superoxide anion and alter the antioxidant system in human osteoblast cells. Int. J. Nanomedicine 10: 1095–1107 (2015)Google Scholar
  21. Otero JH, Lizák B, Hendershot LM. Life and death of a BiP substrate. Semin. Cell Dev. Biol. 21: 472–478 (2010)CrossRefGoogle Scholar
  22. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8: 519–529 (2007)CrossRefGoogle Scholar
  23. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. In Vitro. 25: 231–241 (2011)CrossRefGoogle Scholar
  24. Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7: 48–60 (2013)CrossRefGoogle Scholar
  25. Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 45: 227–247 (2011)CrossRefGoogle Scholar
  26. Sun Q, Ishii T, Kanehira K, Sato T, Taniguchi A. Uniform TiO2 nanoparticles induce apoptosis in epithelial cell lines in a size-dependent manner. Biomater. Sci. 5: 1014–1021 (2014)CrossRefGoogle Scholar
  27. Tada-Oikawa S, Ichihara G, Fukatsu H, Shimanuki Y, Tanaka N, Watanabe E, Suzuki Y, Murakami M, Izuoka K, Chang J, Wu W, Yamada Y, Ichihara S. Titanium dioxide particle type and concentration influence the inflammatory response in Caco-2 cells. Int. J. Mol. Sci. 17: 576 (2016)CrossRefGoogle Scholar
  28. Tedja R, Marquis C, Lim M, Amal R. Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects. J. Nanopart. Res. 13: 3801–3813 (2011)CrossRefGoogle Scholar
  29. Wang Y, Cui H, Zhou J, Li F, Wang J, Chen M. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ. Sci. Pollut. Res. Int. 22: 5519–5530 (2014)CrossRefGoogle Scholar
  30. Wei Z, Kowalska E, Ohtani B. Influence of post-treatment operations on structural properties and photocatalytic activity of octahedral anatase titania particles prepared by an ultrasonication-hydrothermal reaction. Molecules. 19: 19573–19587 (2014)CrossRefGoogle Scholar
  31. Yang X, Shao H, Liu W, Gu W, Shu X, Mo Y. Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol. Lett. 234: 40–49 (2015)CrossRefGoogle Scholar
  32. Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation. Int. J. Nanomed. 7: 1203–1214 (2012)Google Scholar
  33. Yu KN, Chang SH, Park SJ, Lim J, Lee J, Yoon TJ. Titanium dioxide nanoparticles induce endoplasmic reticulum stress-mediated autophagic cell death via mitochondria-associated endoplasmic reticulum membrane disruption in normal lung cells. PLoS One 10: e0131208 (2015)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology 2019

Authors and Affiliations

  • Ha Na Song
    • 1
  • Su Kyung Jang
    • 1
  • Ok Kyung Hwang
    • 2
  • Hong Jin Lee
    • 1
  • Hyang Sook Chun
    • 1
    Email author
  1. 1.Advanced Food Safety Research Group, BK21 Plus, School of Food Science and TechnologyChung-Ang UniversityAnseongKorea
  2. 2.New Drug Development CenterOsong Medical Innovation FoundationCheongjuKorea

Personalised recommendations