Advertisement

Glucocorticoid use is an independent risk factor for developing sarcopenia in patients with rheumatoid arthritis: from the CHIKARA study

  • Yutaro Yamada
  • Masahiro TadaEmail author
  • Koji Mandai
  • Noriaki Hidaka
  • Kentaro Inui
  • Hiroaki Nakamura
Original Article

Abstract

Introduction

Patients with rheumatoid arthritis (RA) are at higher risk of sarcopenia because of joint dysfunction and chronic inflammation. The present study aimed to investigate the predictors or risk factors for developing sarcopenia in RA patients using the prospective observational CHIKARA database. We hypothesized that older age, higher disease activity, lower physical function, and glucocorticoid (GC) use are risk factors for sarcopenia.

Methods

A total of 100 consecutive RA patients participated in the CHIKARA study. Their body compositions were examined using a body composition analyzer. Laboratory data, disease activity, physical function, and treatment were investigated. Sarcopenia was assessed at baseline and at 1 year. Predictors or risk factors for sarcopenia development at 1 year were investigated by univariate and multivariate analyses.

Results

Of 68 patients without sarcopenia at baseline, 9 (13.4%) developed sarcopenia over the year. Univariate analysis showed that age (r = 0.28, p = 0.022), average GC dose over the year (r = 0.25, p = 0.043), and body mass index (r = − 0.28, p = 0.019) were significantly associated with the development of sarcopenia. Average GC use at ≥ 3.25 mg/day was a significant factor on multivariate analysis (odds ratio 8.81, 95% confidence interval 1.14–67.9, p = 0.037).

Conclusions

RA patients using GCs at an average dose ≥ 3.25 mg/day over 1 year were at higher risk for developing sarcopenia. Reduction or withdrawal of GCs may prevent sarcopenia.

Key Points

• Patients with RA are at higher risk of sarcopenia.

• Predictors or risk factors for developing sarcopenia over 1 year in RA patients were investigated using the prospective observational CHIKARA database.

• RA patients using GCs at an average dose ≥ 3.25 mg/day over 1 year were at higher risk for developing sarcopenia.

• Reduction or withdrawal of GCs may be essential to prevent sarcopenia.

Keywords

Bioelectrical impedance analysis Glucocorticoid Prospective observational study Rheumatoid arthritis Sarcopenia 

Notes

Acknowledgments

The authors greatly appreciate the cooperation of the patients with RA.

Funding

This study was supported by a Grant-in-aid for Osteoporosis and Quality of Life 2015 from the Japan Osteoporosis Foundation.

Compliance with ethical standards

Disclosures

None.

References

  1. 1.
    Haraoui B, Smolen JS, Aletaha D, Breedveld FC, Burmester G, Codreanu C, Da Silva JP, de Wit M, Dougados M, Durez P, Emery P, Fonseca JE, Gibofsky A, Gomez-Reino J, Graninger W, Hamuryudan V, Jannaut Pena MJ, Kalden J, Kvien TK, Laurindo I, Martin-Mola E, Montecucco C, Santos Moreno P, Pavelka K, Poor G, Cardiel MH, Stanislawska-Biernat E, Takeuchi T, van der Heijde D (2011) Treating rheumatoid arthritis to target: multinational recommendations assessment questionnaire. Ann Rheum Dis 70(11):1999–2002.  https://doi.org/10.1136/ard.2011.154179 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G, Woo J, Baumgartner R, Pillard F, Boirie Y, Chumlea WM, Vellas B (2008) Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–450CrossRefGoogle Scholar
  3. 3.
    Walsmith J, Roubenoff R (2002) Cachexia in rheumatoid arthritis. Int J Cardiol 85(1):89–99CrossRefGoogle Scholar
  4. 4.
    Masuko K (2014) Rheumatoid cachexia revisited: a metabolic co-morbidity in rheumatoid arthritis. Front Nutr 1:20.  https://doi.org/10.3389/fnut.2014.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Santilli V, Bernetti A, Mangone M, Paoloni M (2014) Clinical definition of sarcopenia. Clin Cases Miner Bone Metab 11(3):177–180PubMedPubMedCentralGoogle Scholar
  6. 6.
    Vincent HK, Raiser SN, Vincent KR (2012) The aging musculoskeletal system and obesity-related considerations with exercise. Ageing Res Rev 11(3):361–373.  https://doi.org/10.1016/j.arr.2012.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kerekes G, Nurmohamed MT, Gonzalez-Gay MA, Seres I, Paragh G, Kardos Z, Barath Z, Tamasi L, Soltesz P, Szekanecz Z (2014) Rheumatoid arthritis and metabolic syndrome. Nat Rev Rheumatol 10(11):691–696.  https://doi.org/10.1038/nrrheum.2014.121 CrossRefPubMedGoogle Scholar
  8. 8.
    Westhovens R, Nijs J, Taelman V, Dequeker J (1997) Body composition in rheumatoid arthritis. Br J Rheumatol 36(4):444–448CrossRefGoogle Scholar
  9. 9.
    Tada M, Yamada Y, Mandai K, Hidaka N (2018) Matrix metalloprotease 3 is associated with sarcopenia in rheumatoid arthritis—results from the CHIKARA study. Int J Rheum Dis 21(11):1962–1969.  https://doi.org/10.1111/1756-185x.13335 CrossRefPubMedGoogle Scholar
  10. 10.
    Torii M, Hashimoto M, Hanai A, Fujii T, Furu M, Ito H, Uozumi R, Hamaguchi M, Terao C, Yamamoto W, Uda M, Nin K, Morita S, Arai H, Mimori T (2018) Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod Rheumatol:1–7.  https://doi.org/10.1080/14397595.2018.1510565 CrossRefGoogle Scholar
  11. 11.
    Santo RCE, Fernandes KZ, Lora PS, Filippin LI, Xavier RM (2018) Prevalence of rheumatoid cachexia in rheumatoid arthritis: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 9(5):816–825.  https://doi.org/10.1002/jcsm.12320 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yoshimura N, Muraki S, Oka H, Iidaka T, Kodama R, Kawaguchi H, Nakamura K, Tanaka S, Akune T (2017) Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos Int 28(1):189–199.  https://doi.org/10.1007/s00198-016-3823-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Matsumoto H, Tanimura C, Tanishima S, Osaki M, Noma H, Hagino H (2017) Sarcopenia is a risk factor for falling in independently living Japanese older adults: a 2-year prospective cohort study of the GAINA study. Geriatr Gerontol Int 17(11):2124–2130.  https://doi.org/10.1111/ggi.13047 CrossRefPubMedGoogle Scholar
  14. 14.
    Beaudart C, Zaaria M, Pasleau F, Reginster JY, Bruyere O (2017) Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One 12(1):e0169548.  https://doi.org/10.1371/journal.pone.0169548 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chalhoub D, Cawthon PM, Ensrud KE, Stefanick ML, Kado DM, Boudreau R, Greenspan S, Newman AB, Zmuda J, Orwoll ES, Cauley JA, Osteoporotic Fractures in Men Study Research G (2015) Risk of nonspine fractures in older adults with sarcopenia, low bone mass, or both. J Am Geriatr Soc 63(9):1733–1740.  https://doi.org/10.1111/jgs.13605 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miyakoshi N, Hongo M, Mizutani Y, Shimada Y (2013) Prevalence of sarcopenia in Japanese women with osteopenia and osteoporosis. J Bone Miner Metab 31(5):556–561.  https://doi.org/10.1007/s00774-013-0443-z CrossRefPubMedGoogle Scholar
  17. 17.
    Stanmore EK, Oldham J, Skelton DA, O'Neill T, Pilling M, Campbell AJ, Todd C (2013) Risk factors for falls in adults with rheumatoid arthritis: a prospective study. Arthritis Care Res 65(8):1251–1258.  https://doi.org/10.1002/acr.21987 CrossRefGoogle Scholar
  18. 18.
    Clynes MA, Edwards MH, Buehring B, Dennison EM, Binkley N, Cooper C (2015) Definitions of sarcopenia: associations with previous falls and fracture in a population sample. Calcif Tissue Int 97(5):445–452.  https://doi.org/10.1007/s00223-015-0044-z CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101.  https://doi.org/10.1016/j.jamda.2013.11.025 CrossRefPubMedGoogle Scholar
  20. 20.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423.  https://doi.org/10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581.  https://doi.org/10.1002/art.27584 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tournadre A, Pereira B, Dutheil F, Giraud C, Courteix D, Sapin V, Frayssac T, Mathieu S, Malochet-Guinamand S, Soubrier M (2017) Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J Cachexia Sarcopenia Muscle 8(4):639–646.  https://doi.org/10.1002/jcsm.12189 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ngeuleu A, Allali F, Medrare L, Madhi A, Rkain H, Hajjaj-Hassouni N (2017) Sarcopenia in rheumatoid arthritis: prevalence, influence of disease activity and associated factors. Rheumatol Int 37(6):1015–1020.  https://doi.org/10.1007/s00296-017-3665-x CrossRefPubMedGoogle Scholar
  24. 24.
    Dogan SC, Hizmetli S, Hayta E, Kaptanoglu E, Erselcan T, Guler E (2015) Sarcopenia in women with rheumatoid arthritis. Eur J Rheumatol 2(2):57–61.  https://doi.org/10.5152/eurjrheum.2015.0038 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Giles JT, Ling SM, Ferrucci L, Bartlett SJ, Andersen RE, Towns M, Muller D, Fontaine KR, Bathon JM (2008) Abnormal body composition phenotypes in older rheumatoid arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Rheum 59(6):807–815.  https://doi.org/10.1002/art.23719 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yamada M, Kimura Y, Ishiyama D, Nishio N, Abe Y, Kakehi T, Fujimoto J, Tanaka T, Ohji S, Otobe Y, Koyama S, Okajima Y, Arai H (2017) Differential characteristics of skeletal muscle in community-dwelling older adults. J Am Med Dir Assoc 18(9):807.e809–807.e816.  https://doi.org/10.1016/j.jamda.2017.05.011 CrossRefGoogle Scholar
  27. 27.
    Targowski T (2017) Sarcopaenia and rheumatoid arthritis. Reumatologia 55(2):84–87.  https://doi.org/10.5114/reum.2017.67603 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ, Zhuang H, Dawson-Hughes B, Dinarello CA, Rosenberg IH (1994) Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest 93(6):2379–2386.  https://doi.org/10.1172/jci117244 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Matsumoto Y, Sugioka Y, Tada M, Okano T, Mamoto K, Inui K, Habu D, Koike T (2015) Lifestyle characteristics of rheumatoid arthritis patients with sarcopenia. J Japan Soc Parenteral Enteral Nutrition 30(3):793–797.  https://doi.org/10.11244/jspen.30.793 CrossRefGoogle Scholar
  30. 30.
    Kim H, Suzuki T, Kim M, Kojima N, Yoshida Y, Hirano H, Saito K, Iwasa H, Shimada H, Hosoi E, Yoshida H (2015) Incidence and predictors of sarcopenia onset in community-dwelling elderly Japanese women: 4-year follow-up study. J Am Med Dir Assoc 16(1):85.e81–85.e88.  https://doi.org/10.1016/j.jamda.2014.10.006 CrossRefGoogle Scholar
  31. 31.
    Kramer HR, Fontaine KR, Bathon JM, Giles JT (2012) Muscle density in rheumatoid arthritis: associations with disease features and functional outcomes. Arthritis Rheum 64(8):2438–2450.  https://doi.org/10.1002/art.34464 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Binymin K, Herrick A, Carlson G, Hopkins S (2011) The effect of disease activity on body composition and resting energy expenditure in patients with rheumatoid arthritis. J Inflamm Res 4:61–66.  https://doi.org/10.2147/jir.S16508 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lambert CP, Wright NR, Finck BN, Villareal DT (2008) Exercise but not diet-induced weight loss decreases skeletal muscle inflammatory gene expression in frail obese elderly persons. J Appl Physiol (1985) 105(2):473–478.  https://doi.org/10.1152/japplphysiol.00006.2008 CrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2020

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryOsaka City University Graduate School of MedicineAbeno-kuJapan
  2. 2.Department of Orthopedic SurgeryOsaka City General HospitalMiyakojima-kuJapan

Personalised recommendations