Noninvasive positive pressure ventilator deteriorates the outcome of pneumomediastinum in anti-MDA5 antibody-positive clinically amyopathic dermatomyositis

  • Mengmeng Zhou
  • Yan Ye
  • Ninghui Yan
  • Xinyue Lian
  • Chunde BaoEmail author
  • Qiang GuoEmail author
Original Article



Anti-melanoma differentiation-associated gene 5 (MDA5) antibody (Ab)-positive clinically amyopathic dermatomyositis (CADM) with pneumomediastinum (PNM) is a life-threatening condition. We aim to determine the prognostic factors affecting survival of patients with anti-MDA5 Ab-positive CADM complicated with PNM.


We retrospectively established a cohort of patients with anti-MDA5 Ab-positive CADM complicated with PNM from April 2013 to July 2019. Demographic data and clinical characteristics from medical records were analyzed and variables were compared between survivors and nonsurvivors. We performed univariate and multivariate survival analyses by Cox regression. Survival curves were depicted by the Kaplan–Meier method.


Among 133 patients with anti-MDA5 Ab-positive CADM, 20 were diagnosed with PNM. The cumulative estimated Kaplan–Meier survival rate was 85% at 1 week, 55% at 1 month, and 40% at 1 year. Univariate analysis indicated several factors associated with survival. Worse liver function (AST, p = 0.043; LDH, p = 0.002; TBIL, p = 0.038), higher CRP level (p = 0.044), higher HRCT score (p = 0.022), and using noninvasive positive pressure ventilation (NPPV) (p < 0.01) were associated with poor prognosis. In a multivariate Cox regression model, AST level and using NPPV were indicated to be independent predictors of poor prognosis.


In this research, we found that the incidence rate of PNM in anti-MDA5 Ab-positive CADM was 15.5%, obviously higher than in classical DM. The application of noninvasive positive pressure ventilator (NPPV) and higher AST level were independent risk factors for survival.

Key Points

Anti-MDA5 Ab-positive CADM complicated with PNM is a life-threatening condition with an incidence rate of 15.5%.

The application of NPPV and worse liver function were independent risk factors for survival of anti-MDA5 Ab-positive CADM patients complicated with PNM.


Clinically amyopathic dermatomyositis MDA5 Pneumomediastinum Prognosis 



We acknowledge the patients and clinicians involved in the project.

Funding information

This work was supported by the National Natural Science Foundation of China (grants 81571575, 81771737).

Compliance with ethical standards

Ethical statements

The study was approved by the Ethics Committee of Renji Hospital, Shanghai, China. All patients have given their informed consent prior to their inclusion in the study.




  1. 1.
    Bailey EE, Fiorentino DF (2014) Amyopathic dermatomyositis: definitions, diagnosis, and management. Curr Rheumatol Rep 16(12):465. CrossRefPubMedGoogle Scholar
  2. 2.
    Callen JP (2000) Dermatomyositis. Lancet 355(9197):53–57. CrossRefPubMedGoogle Scholar
  3. 3.
    Sato S, Kuwana M (2010) Clinically amyopathic dermatomyositis. Curr Opin Rheumatol 22(6):639–643. CrossRefPubMedGoogle Scholar
  4. 4.
    Gono T, Sato S, Kawaguchi Y, Kuwana M, Hanaoka M, Katsumata Y, Takagi K, Baba S, Okamoto Y, Ota Y, Yamanaka H (2012) Anti-MDA5 antibody, ferritin and IL-18 are useful for the evaluation of response to treatment in interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Rheumatology (Oxford) 51(9):1563–1570. CrossRefGoogle Scholar
  5. 5.
    Ichiyasu H, Sakamoto Y, Yoshida C, Sakamoto K, Fujita R, Nakayama G, Okabayashi H, Saeki S, Okamoto S, Kohrogi H (2017) Rapidly progressive interstitial lung disease due to anti-MDA-5 antibody-positive clinically amyopathic dermatomyositis complicated with cervical cancer: successful treatment with direct hemoperfusion using polymyxin B-immobilized fiber column therapy. Respir Med Case Rep 20:51–54. CrossRefPubMedGoogle Scholar
  6. 6.
    Sato S, Kuwana M, Fujita T, Suzuki Y (2012) Amyopathic dermatomyositis developing rapidly progressive interstitial lung disease with elevation of anti-CADM-140/MDA5 autoantibodies. Mod Rheumatol 22(4):625–629. CrossRefPubMedGoogle Scholar
  7. 7.
    Nakashima R, Imura Y, Kobayashi S, Yukawa N, Yoshifuji H, Nojima T, Kawabata D, Ohmura K, Usui T, Fujii T, Okawa K, Mimori T (2010) The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 49(3):433–440. CrossRefGoogle Scholar
  8. 8.
    Xu Y, Yang CS, Li YJ, Liu XD, Wang JN, Zhao Q, Xiao WG, Yang PT (2016) Predictive factors of rapidly progressive-interstitial lung disease in patients with clinically amyopathic dermatomyositis. Clin Rheumatol 35(1):113–116. CrossRefPubMedGoogle Scholar
  9. 9.
    Chen Z, Wang X, Ye S (2019) Tofacitinib in amyopathic dermatomyositis-associated interstitial lung disease. N Engl J Med 381(3):291–293. CrossRefPubMedGoogle Scholar
  10. 10.
    Koga T, Fujikawa K, Horai Y, Okada A, Kawashiri SY, Iwamoto N, Suzuki T, Nakashima Y, Tamai M, Arima K, Yamasaki S, Nakamura H, Origuchi T, Hamaguchi Y, Fujimoto M, Ishimatsu Y, Mukae H, Kuwana M, Kohno S, Eguchi K, Aoyagi K, Kawakami A (2012) The diagnostic utility of anti-melanoma differentiation-associated gene 5 antibody testing for predicting the prognosis of Japanese patients with DM. Rheumatology (Oxford) 51(7):1278–1284. CrossRefGoogle Scholar
  11. 11.
    Kara H, Uyar HG, Degirmenci S, Bayir A, Oncel M, Ak A (2015) Dyspnoea and chest pain as the presenting symptoms of pneumomediastinum: two cases and a review of the literature. Cardiovasc J Afr 26(6):e1–e4. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gray JM, Hanson GC (1966) Mediastinal emphysema: aetiology, diagnosis, and treatment. Thorax 21(4):325–332. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ma X, Chen Z, Hu W, Guo Z, Wang Y, Kuwana M, Sun L (2016) Clinical and serological features of patients with dermatomyositis complicated by spontaneous pneumomediastinum. Clin Rheumatol 35(2):489–493. CrossRefPubMedGoogle Scholar
  14. 14.
    Le Goff B, Cherin P, Cantagrel A, Gayraud M, Hachulla E, Laborde F, Papo T, Sibilia J, Zabraniecki L, Ravaud P, Puechal X (2009) Pneumomediastinum in interstitial lung disease associated with dermatomyositis and polymyositis. Arthritis Rheum 61(1):108–118. CrossRefPubMedGoogle Scholar
  15. 15.
    Li J, Liu Y, Li Y, Li F, Wang K, Pan W, Meng D (2018) Associations between anti-melanoma differentiation-associated gene 5 antibody and demographics, clinical characteristics and laboratory results of patients with dermatomyositis: a systematic meta-analysis. J Dermatol 45(1):46–52. CrossRefPubMedGoogle Scholar
  16. 16.
    Bohan A, Peter JB, Bowman RL, Pearson CM (1977) A computer-assisted analysis of 153 patients with polymyositis and dermatomyosis. Medicine 56(4)CrossRefGoogle Scholar
  17. 17.
    Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (first of two parts). N Engl J Med 292:344–347CrossRefGoogle Scholar
  18. 18.
    Bohan A, Peter JB (1975) Polymyositis and dermatomyositis (second of two parts). N Engl J Med 292:403–407CrossRefGoogle Scholar
  19. 19.
    Gil B, Merav L, Pnina L, Chagai G (2016) Diagnosis and treatment of clinically amyopathic dermatomyositis (CADM): a case series and literature review. Clin Rheumatol 35(8):2125–2130. CrossRefPubMedGoogle Scholar
  20. 20.
    Moghadam-Kia S, Oddis CV, Sato S, Kuwana M, Aggarwal R (2016) Anti-melanoma differentiation-associated gene 5 is associated with rapidly progressive lung disease and poor survival in US patients with amyopathic and myopathic dermatomyositis. Arthritis Care Res (Hoboken) 68(5):689–694. CrossRefGoogle Scholar
  21. 21.
    Ye Y, Fu Q, Wang R, Guo Q, Bao C (2019) Serum KL-6 level is a prognostic marker in patients with anti-MDA5 antibody-positive dermatomyositis associated with interstitial lung disease. J Clin Lab Anal e22978.
  22. 22.
    Ye S, Chen XX, Lu XY, Wu MF, Deng Y, Huang WQ, Guo Q, Yang CD, Gu YY, Bao CD, Chen SL (2007) Adult clinically amyopathic dermatomyositis with rapid progressive interstitial lung disease: a retrospective cohort study. Clin Rheumatol 26(10):1647–1654. CrossRefPubMedGoogle Scholar
  23. 23.
    Selva-O’Callaghan A, Labrador-Horrillo M, Munoz-Gall X, Martinez-Gomez X, Majo-Masferrer J, Solans-Laque R, Simeon-Aznar CP, Morell-Brotard F, Vilardell-Tarres M (2005) Polymyositis/dermatomyositis-associated lung disease: analysis of a series of 81 patients. Lupus 14(7):534–542. CrossRefPubMedGoogle Scholar
  24. 24.
    Zou J, Guo Q, Chi J, Wu H, Bao C (2015) HRCT score and serum ferritin level are factors associated to the 1-year mortality of acute interstitial lung disease in clinically amyopathic dermatomyositis patients. Clin Rheumatol 34(4):707–714. CrossRefPubMedGoogle Scholar
  25. 25.
    Hansell DMBA, MacMahon H, McLoud TC, Müller NL, Remy J (2008) Fleischner Society: glossary terms for thoracic imaging. Radiology 246:697–722CrossRefGoogle Scholar
  26. 26.
    Jansen TL, Barrera P, van Engelen BG, Cox N, Laan RF, van de Putte LB (1998) Dermatomyositis with subclinical myositis and spontaneous pneumomediastinum with pneumothorax: case report and review of the literature. Clin Exp Rheumatol 16(6):733–735PubMedGoogle Scholar
  27. 27.
    Zhang L, Shen M, Zhang F, Tang F (2014) Survival analysis and risk factors for mortality in connective tissue disease-associated pneumomediastinum. Rheumatol Int 34(12):1657–1663. CrossRefPubMedGoogle Scholar
  28. 28.
    Pham T, Brochard LJ, Slutsky AS (2017) Mechanical ventilation: state of the art. Mayo Clin Proc 92(9):1382–1400. CrossRefPubMedGoogle Scholar
  29. 29.
    Moret Iurilli C, Brunetti ND, Di Corato PR, Salvemini G, Di Biase M, Ciccone MM, Procacci V (2018) Hyperacute hemodynamic effects of BiPAP noninvasive ventilation in patients with acute heart failure and left ventricular systolic dysfunction in emergency department. J Intensive Care Med 33(2):128–133. CrossRefPubMedGoogle Scholar
  30. 30.
    Pettenuzzo T, Fan E (2017) 2016 year in review: mechanical ventilation. Respir Care 62(5):629–635. CrossRefPubMedGoogle Scholar
  31. 31.
    Yashiro M, Asano T, Sato S, Kobayashi H, Watanabe H, Miyata M, Migita K (2018) Anti-MDA5 antibody-positive hypomyopathic dermatomyositis complicated with pneumomediastinum. Fukushima J Med Sci 64(2):89–92CrossRefGoogle Scholar
  32. 32.
    Lodeserto FJ, Lettich TM, Rezaie SR (2018) High-flow nasal cannula: mechanisms of action and adult and pediatric indications. Cureus 10(11):e3639. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yamaguchi K, Yamaguchi A, Itai M, Kashiwagi C, Takehara K, Aoki S, Sawada Y, Taguchi K, Umetsu K, Oshima K, Uchida M, Takemura M, Hara K, Motegi SI, Muro Y, Nakasatomi M, Sakairi T, Hiromura K, Kurabayashi M, Maeno T (2019) Clinical features of patients with anti-melanoma differentiation-associated gene-5 antibody-positive dermatomyositis complicated by spontaneous pneumomediastinum. Clin Rheumatol 38:3443–3450. CrossRefPubMedGoogle Scholar
  34. 34.
    Udkoff J, Cohen PR (2016) Amyopathic dermatomyositis: a concise review of clinical manifestations and associated malignancies. Am J Clin Dermatol 17(5):509–518. CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang S-H, Peng Y, Xie Q-B, Yin G, Yan B (2018) Risk factors of respiratory failure in the dermatomyositis patients with interstitial lung disease. Sichuan Da Xue Xue Bao Yi Xue Ban 49(2):188–194PubMedGoogle Scholar
  36. 36.
    Nagashima T, Kamata Y, Iwamoto M, Okazaki H, Fukushima N, Minota S (2019) Liver dysfunction in anti-melanoma differentiation-associated gene 5 antibody-positive patients with dermatomyositis. Rheumatol Int 39(5):901–909. CrossRefPubMedGoogle Scholar
  37. 37.
    Okada M, Adachi H, Shibuya Y, Ishikawa S, Hamabe Y (2014) Diagnosis and treatment of patients with spontaneous pneumomediastinum. Respir Investig 52(1):36–40. CrossRefPubMedGoogle Scholar
  38. 38.
    Dajer-Fadel WL, Arguero-Sanchez R, Ibarra-Perez C, Navarro-Reynoso FP (2014) Systematic review of spontaneous pneumomediastinum: a survey of 22 years’ data. Asian Cardiovasc Thorac Ann 22(8):997–1002. CrossRefPubMedGoogle Scholar
  39. 39.
    Nagai Y, Ishikawa O, Miyachi Y (1997) Pneumomediastinum and subcutaneous emphysema associated with fatal interstitial pneumonia in dermatomyositis. J Dermatol 24(7):482–484CrossRefGoogle Scholar
  40. 40.
    Macklin CC (1939) Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum: clinical implications. Arch Intern Med 64:913–926. CrossRefGoogle Scholar
  41. 41.
    Macklin MT, Macklin CC (1944) Malignant interstitial emphysema of the lungs and mediastinum as an important occult complication in many respiratory diseases and other conditions: an interpretation of the clinical literature in the light of laboratory experiment. Medicine 23:281–358. CrossRefGoogle Scholar
  42. 42.
    Du Clos TW, Mold CM (2004) C-reactive protein an activator of innate immunity and a modulator of Adaptive Immunity. Immunol Res 30(3):261–277CrossRefGoogle Scholar
  43. 43.
    Tang R, Millett CR, Green JJ (2013) Amyopathic dermatomyositis complicated by pneumomediastinum. J Clin Aesthet Dermatol 6(3):40–43PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chan CWS, Chung HY, Lau CS, Tsang HHL (2019) Spontaneous pneumomediastinum in a dermatomyositis patient with anti-melanoma differentiation-associated gene-5 antibody and interstitial lung disease despite an initial response to immunosuppressant. Int J Rheum Dis 22(3):521–524. CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2020

Authors and Affiliations

  1. 1.Department of Rheumatology, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations