Extractable synovial fluid in inflammatory and non-inflammatory arthritis of the knee

  • Noelle A. Rolle
  • Irum Jan
  • Wilmer L. SibbittJrEmail author
  • Philip A. Band
  • Luke J. Haseler
  • William A. Hayward
  • Maheswari Muruganandam
  • N. Suzanne Emil
  • Monthida Fangtham
  • Arthur D. Bankhurst
Original Article



We hypothesized that mechanical compression of the knee in rheumatoid arthritis (RA) would mobilize occult extractable fluid and improve arthrocentesis success.


Sixty-seven consecutive knees with RA and 186 knees with OA and were included. Conventional arthrocentesis was performed and success and volume (milliliters) determined; the needle was left intraarticularly, and mechanical compression was applied with an elastomeric knee brace. Arthrocentesis was then resumed until fluid return ceased. Fluid was characterized as to volume and cell counts.


In the RA, knee mechanical compression decreased failed diagnostic arthrocentesis from 56.7% (38/67) to 26.9% (18/67) (− 47.4%, p = 0.003) and increased absolute arthrocentesis yield from 4.7 ± 10.3 ml to 9.8 ± 9.8 ml (108% increase, 95% CI − 8.5 < − 5.1 < − 1.7 p = 0.0038). Total extractable fluid yield was 96% greater in RA (9.8 ± 9.8 ml) than OA (5.0 ± 9.4 ml, p = 0.0008), and occult extractable fluid was 77% greater in RA than OA (RA 5.3 ± 8.7 ml, OA 3.0 ± 5.5 ml, p = 0.046). Large effusions versus small effusions in RA demonstrated increased neutrophils in synovial fluid (p = 0.04) but no difference in radiologic arthritis grade (p = 0.87). In contrast, large effusions versus small effusions in OA demonstrated no difference in neutrophils in synovial fluid (p = 0.87) but significant different radiologic arthritis grade (p = 0.04).


Mechanical compression improves the success of diagnostic and therapeutic knee arthrocentesis in both RA and OA. Large effusions in RA are associated with increased neutrophil counts but not arthritis grade; in contrast, large effusions in OA are associated with more severe arthritis grades but not increased neutrophil counts.

Key points

Mechanical compression of the painful knee improves arthrocentesis success and fluid yield in both rheumatoid arthritis and osteoarthritis.

The painful rheumatoid knee contains approximately 100% more fluid than the osteoarthritic knee.

Large effusions in the osteoarthritic knee are characterized by higher grades of mechanical destruction but not increased neutrophil counts.

In contrast, large effusions in the rheumatoid knee are characterized by higher synovial fluid neutrophil counts but not the grade of mechanical destruction, indicating different mechanisms of effusion formation in rheumatoid arthritis versus osteoarthritis.


Arthrocentesis Injections Intraarticular Knee Quality 



The authors would like to thank Jackie Cremar for logistic assistance in preparation of this manuscript.

Compliance with ethical standards

Ethical standards

All human and animal studies have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All persons gave their informed consent prior to any procedures and prior to the inclusion in the study.




  1. 1.
    Oliviero F, Galozzi P, Ramonda R, de Oliveira FL, Schiavon F, Scanu A, Punzi L (2017) Unusual findings in synovial fluid analysis: a review. Ann Clin Lab Sci 47(3):253–259Google Scholar
  2. 2.
    Courtney P, Doherty M (2013) Joint aspiration and injection and synovial fluid analysis. Best Pract Res Clin Rheumatol 27(2):137–169CrossRefGoogle Scholar
  3. 3.
    Shmerling RH (1994) Synovial fluid analysis. A critical reappraisal. Rheum Dis Clin North Am 20(2):503–512 ReviewGoogle Scholar
  4. 4.
    Wojdasiewicz P, Poniatowski ŁA, Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat Inflamm 2014:561459CrossRefGoogle Scholar
  5. 5.
    Wisniewski HG, Colón E, Liublinska V, Karia RJ, Stabler TV, Attur M, Abramson SB, Band PA, Kraus VB (2014) TSG-6 activity as a novel biomarker of progression in knee osteoarthritis. Osteoarthr Cartil 22(2):235–241. Epub 2013 Dec 12CrossRefGoogle Scholar
  6. 6.
    Meehan R, Wilson C, Hoffman E, Regan E, Altimier L (2015) Ultrasound quantification of fluid shifts in the knees of arthritis patients before and after inflation of a pneumatic compressive device. Arthritis Rheum 67(Absract Supplement):180Google Scholar
  7. 7.
    Bhavsar TB, Sibbitt WL Jr, Band PA, Cabacungan RJ, Moore TS, Salayandia LC, Fields RA, Kettwich SK, Roldan LP, Emil NS, Fangtham M, Improvement in Diagnostic BAD (2018) Therapeutic arthrocentesis via constant compression. Clin Rheumatol 37(8):2251–2259. Epub 2017 Sep 14. PMID:28913649CrossRefGoogle Scholar
  8. 8.
    Yaqub S, Sibbitt WL Jr, Band PA, Bennett JF, Emil NS, Fangtham M, Fields RA, Hayward WA, Kettwich SK, Roldan LP, Bankhurst AD (2018) Can diagnostic and therapeutic arthrocentesis be successfully performed in the flexed knee? J Clin Rheumatol 24(6):295–301. 29424762 CrossRefGoogle Scholar
  9. 9.
    Bennett JF, Sibbitt WL Jr, Band PA, Yaqub SN, Emil NS, Fangtham M, Fields RA, Hayward WA, Kettwich SD, Bankhurst AD Compression-assisted arthrocentesis as a quality improvement intervention. bioRxiv 2018:395376.
  10. 10.
    Axelsen MB, Stoltenberg M, Poggenborg RP, Kubassova O, Boesen M, Bliddal H, Hørslev-Petersen K, Hanson LG, Østergaard M (2012) Dynamic gadolinium-enhanced magnetic resonance imaging allows accurate assessment of the synovial inflammatory activity in rheumatoid arthritis knee joints: a comparison with synovial histology. Scand J Rheumatol 41(2):89–94. CrossRefGoogle Scholar
  11. 11.
    Ostergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Sonne-Holm S, Lorenzen I (1998) Quantification of synovitis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson Imaging 16(7):743–754CrossRefGoogle Scholar
  12. 12.
    Ostergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Jensen CH, Lorenzen I (1997) Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium. Arthritis Rheum 40(10):1856–1867 9336422CrossRefGoogle Scholar
  13. 13.
    Hampel U, Sesselmann S, Iserovich P, Sel S, Paulsen F, Sack R (2013) Chemokine and cytokine levels in osteoarthritis and rheumatoid arthritis synovial fluid. J Immunol Methods 396(1–2):134–139. CrossRefGoogle Scholar
  14. 14.
    Perlman H, Nguyen N, Liu H, Eslick J, Esser S, Walsh K, Moore TL, Pope RM (2003) Rheumatoid arthritis synovial fluid macrophages express decreased tumor necrosis factor-related apoptosis-inducing ligand R2 and increased decoy receptor tumor necrosis factor-related apoptosis-inducing ligand R3. Arthritis Rheum 48(11):3096–3101CrossRefGoogle Scholar
  15. 15.
    Belcher C, Doherty M, Crouch SP (2002) Synovial fluid neutrophil function in RA: the effect of pregnancy associated proteins. Ann Rheum Dis 61(4):379–380 No abstract availableCrossRefGoogle Scholar
  16. 16.
    Chow SL, Shojania KG (2017) “Rheum to improve”: quality improvement in outpatient rheumatology. J Rheumatol 44:1304–1310CrossRefGoogle Scholar
  17. 17.
    Brandt KD, Fife RS, Braunstein EM, Katz B (1991) Radiographic grading of the severity of knee osteoarthritis: relation of the Kellgren and Lawrence grade to a grade based on joint space narrowing, and correlation with arthroscopic evidence of articular cartilage degeneration. Arthritis Rheum 34:1381–1386CrossRefGoogle Scholar
  18. 18.
    Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Ménard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 69(9):1580–1588. Erratum in: Ann Rheum Dis. 2010 Oct;69(10):1892. PMID: 20699241CrossRefGoogle Scholar
  19. 19.
    Roberts WN, Hayes CW, Breitbach SA, Owen DS Jr (1996) Dry taps and what to do about them: a pictorial essay on failed arthrocentesis of the knee. Am J Med 100:461–464CrossRefGoogle Scholar
  20. 20.
    Roberts WN (2007) Primer: pitfalls of aspiration and injection. Nat Clin Pract Rheumatol 3:464–472CrossRefGoogle Scholar
  21. 21.
    Myles PS, Troedel S, Boquest M, Reeves M (1999) The pain visual analogue scale. Is it linear or nonlinear? Anesth Analg 89:1517–1520Google Scholar
  22. 22.
    Band PA, Heeter J, Wisniewski HG, Liublinska V, Pattanayak CW, Karia RJ, Stabler T, Balazs EA, Kraus VB (2015) Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthr Cartil 23:70–76CrossRefGoogle Scholar
  23. 23.
    Weitoft T, Uddenfeldt P (2000) Importance of synovial fluid aspiration when injecting intra-articular corticosteroids. Ann Rheum Dis 59:233–235CrossRefGoogle Scholar
  24. 24.
    Sibbitt WL Jr, Kettwich LG, Band PA, Chavez-Chiang NR, DeLea SL, Haseler LJ, Bankhurst AD (2012) Does ultrasound guidance improve the outcomes of arthrocentesis and corticosteroid injection of the knee? Scand J Rheumatol 41:66–72CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Zhang T Effect on pain and symptoms of aspiration before hyaluronan injection for knee osteoarthritis: a prospective, randomized, single-blind study (2016). Am J Phys Med Rehabil 95:366–371Google Scholar
  26. 26.
    Tanaka N, Sakahashi H, Sato E, Hirose K, Ishima T, Ishii S (2002) Intra-articular injection of high molecular weight hyaluronan after arthrocentesis as treatment for rheumatoid knees with joint effusion. Rheumatol Int 22:151–154CrossRefGoogle Scholar
  27. 27.
    Chaudhry H, Bukiet B, Roman M, Stecco A, Findley T (2013) Squeeze film lubrication for non-Newtonian fluids with application to manual medicine. Biorheology. 50:191–202Google Scholar
  28. 28.
    Meehan R (2008) Joint aspirate facilitating device. US Patent 7,468,048, issued December 23, 2008, US Patent and Trademark Office, USAGoogle Scholar
  29. 29.
    Volck B, Johansen JS, Stoltenberg M, Garbarsch C, Price PA, Ostergaard M, Ostergaard K, Løvgreen-Nielsen P, Sonne-Holm S, Lorenzen I (2001) Studies on YKL-40 in knee joints of patients with rheumatoid arthritis and osteoarthritis. Involvement of YKL-40 in the joint pathology. Osteoarthr Cartil 9(3):203–214CrossRefGoogle Scholar
  30. 30.
    McCabe PS, Parkes MJ, Maricar N, Hutchinson CE, Freemont A, O’Neill TW, Felson DT (2017) Brief report: synovial fluid white blood cell count in knee osteoarthritis: association with structural findings and treatment response. Arthritis Rheumatol 69(1):103–107. CrossRefGoogle Scholar
  31. 31.
    Pelletier JP, Raynauld JP, Abram F, Haraoui B, Choquette D, Martel-Pelletier J (2008) A new non-invasive method to assess synovitis severity in relation to symptoms and cartilage volume loss in knee osteoarthritis patients using MRI. Osteoarthr Cartil 16(Suppl 3):S8–S13. CrossRefGoogle Scholar
  32. 32.
    Arthroventions: KneeTap needle guide. Accessed Jan 5, 2018

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  • Noelle A. Rolle
    • 1
  • Irum Jan
    • 2
  • Wilmer L. SibbittJr
    • 1
    Email author
  • Philip A. Band
    • 3
  • Luke J. Haseler
    • 4
  • William A. Hayward
    • 5
  • Maheswari Muruganandam
    • 1
  • N. Suzanne Emil
    • 1
  • Monthida Fangtham
    • 1
  • Arthur D. Bankhurst
    • 1
  1. 1.Department of Internal Medicine, Division of Rheumatology and School of Medicine, MSC 10 5550, 5th FL ACCUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA
  2. 2.Department of Internal Medicine, MSC 10 5550, 5th FL ACCUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA
  3. 3.Department of Orthopaedic Surgery, Biochemistry & Molecular PharmacologyNYU School of MedicineNew York CityUSA
  4. 4.Faculty of Health Sciences, School of Physiotherapy and Exercise ScienceCurtin UniversityPerthAustralia
  5. 5.The Department of Exercise and Sport SciencesNew Mexico Highlands UniversityLas VegasUSA

Personalised recommendations