Advertisement

Microarray expression profile of circular RNAs and mRNAs in children with systemic lupus erythematosus

  • Shipeng Li
  • Junmei Zhang
  • Xiaohua Tan
  • Jianghong Deng
  • Yan Li
  • Yurong Piao
  • Chao Li
  • Wenxu Yang
  • Wenxiu Mo
  • Jiapeng Sun
  • Fei Sun
  • Tongxin Han
  • Jiang Wang
  • Weiying Kuang
  • Caifeng Li
Original Article
  • 33 Downloads

Abstract

Background

Recently, it was reported that circular RNAs (circRNAs) play the crucial role in many physiological and biological processes and can be used as biomarkers. However, the information about circRNAs in children with systemic lupus erythematosus (SLE) is limited. The aim of this study is to determine the expression of circRNAs in children with SLE and investigate the significance of circRNA for diagnosing SLE.

Methods

Microarray profile of circRNAs and mRNAs was performed for identifying the changes in expression of circRNAs and mRNAs between children with SLE and healthy children. Quantitative polymerase chain reaction (qPCR) was used to confirm the results. Spearman correlation test was performed to assess the correlation between circRNAs and clinical variables. The receiver operating characteristic (ROC) curve was calculated for evaluating the diagnostic value.

Results

A comparison between the children with SLE and healthy children revealed that 348 circRNAs and 1162 mRNAs were expressed differentially. The authors constructed a complex circRNA target network consisting of 307 matched circRNA-mRNA pairs for 124 differentially expressed circRNAs (74 circRNAs were upregulated, and 50 circRNAs were downregulated) and 142 differentially expressed mRNAs (83 mRNAs were upregulated, and 59 mRNAs were downregulated) by using gene co-expression network analysis. The competing for endogenous RNA (ceRNA) network includes 42 differentially expressed circRNAs, 41 differentially expressed mRNAs, and 71 predicted miRNAs. Among these SLE patients, we detected that the hsa_circ_0021372 and hsa_circ_0075699 levels are associated with C3 and C4 levels in children with SLE. The hsa_circ_0057762 level is positively associated with the SLEDAI-2K score. The ROC curves of circRNAs showed that the levels of hsa_circ_0057762 (AUC 0.804, 95% CI 0.607–1.0, P = 0.02) and hsa_circ_0003090 (AUC 0.848, 95% CI 0.688–1.0, P = 0.008) could differentiate the patients with SLE from the healthy controls.

Conclusions

We firstly characterized the expression profiles of circRNA and mRNA in children with SLE and propose herein their possible roles in the pathogenesis of SLE. These results provide novel insight into the mechanisms of SLE pathogenesis, and circRNAs may serve as useful biomarkers for SLE.

Keywords

Children circRNA Systemic lupus erythematosus 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (81701604), Beijing Talents Fund (2015000021469G207), Beijing Children’s Hospital Young Investigator (BCHYIPA-2016-14), and Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201710025019).

Compliance with ethical standards

Disclosures

None.

References

  1. 1.
    Barnett R (2016) Systemic lupus erythematosus. Lancet (London, England) 387(10029):1711.  https://doi.org/10.1016/s0140-6736(16)30266-5 CrossRefGoogle Scholar
  2. 2.
    Qu B, Cao J, Zhang F, Cui H, Teng J, Li J, Liu Z, Morehouse C, Jallal B, Tang Y, Guo Q, Yao Y, Shen N (2015) Type I interferon inhibition of microRNA-146a maturation through up-regulation of monocyte chemotactic protein-induced protein 1 in systemic lupus erythematosus. Arthritis Rheumatol 67(12):3209–3218.  https://doi.org/10.1002/art.39398 CrossRefPubMedGoogle Scholar
  3. 3.
    Wang W, Mou S, Wang L, Zhang M, Shao X, Fang W, Lu R, Qi C, Fan Z, Cao Q, Wang Q, Fang Y, Ni Z (2015) Up-regulation of serum miR-130b-3p level is associated with renal damage in early lupus nephritis. Sci Rep 5:12644.  https://doi.org/10.1038/srep12644 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148.  https://doi.org/10.1016/j.canlet.2015.06.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, Yang S, Zeng Z, Liao W, Ding YQ, Liang L (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691.  https://doi.org/10.18632/oncotarget.8589 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Akhter R (2018) Circular RNA and Alzheimer's disease. Adv Exp Med Biol 1087:239–243.  https://doi.org/10.1007/978-981-13-1426-1_19 CrossRefPubMedGoogle Scholar
  7. 7.
    Wu HJ, Zhang CY, Zhang S, Chang M, Wang HY (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39(1):205–216.  https://doi.org/10.1159/000445617 CrossRefPubMedGoogle Scholar
  8. 8.
    Li LJ, Zhu ZW, Zhao W, Tao SS, Li BZ, Xu SZ, Wang JB, Zhang MY, Wu J, Leng RX, Fan YG, Pan HF, Ye DQ (2018) Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology 155(1):137–149.  https://doi.org/10.1111/imm.12940 CrossRefPubMedGoogle Scholar
  9. 9.
    Li H, Li K, Lai W, Li X, Wang H, Yang J, Chu S, Wang H, Kang C, Qiu Y (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25.  https://doi.org/10.1016/j.cca.2018.01.026 CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang MY, Wang JB, Zhu ZW, Li LJ, Liu RS, Yang XK, Leng RX, Li XM, Pan HF, Ye DQ (2018) Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance. Biomed Pharmacother 107:1720–1727.  https://doi.org/10.1016/j.biopha.2018.08.161 CrossRefPubMedGoogle Scholar
  11. 11.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388.  https://doi.org/10.1080/15476286.2015.1020271 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461.  https://doi.org/10.1038/nbt.2890 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856CrossRefGoogle Scholar
  14. 14.
    Cocquerelle C, Mascrez B, Hetuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160CrossRefGoogle Scholar
  15. 15.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338.  https://doi.org/10.1038/nature11928 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388.  https://doi.org/10.1038/nature11993 CrossRefPubMedGoogle Scholar
  17. 17.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY) 19(2):141–157.  https://doi.org/10.1261/rna.035667.112 CrossRefGoogle Scholar
  18. 18.
    Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777.  https://doi.org/10.1371/journal.pgen.1003777 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806.  https://doi.org/10.1016/j.molcel.2013.08.017 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264.  https://doi.org/10.1038/nsmb.2959 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610.  https://doi.org/10.1038/nn.3975 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cheng J, Wu R, Long L, Su J, Liu J, Wu XD, Zhu J, Zhou B (2017) miRNA-451a targets IFN regulatory factor 8 for the progression of systemic lupus erythematosus. Inflammation 40(2):676–687.  https://doi.org/10.1007/s10753-017-0514-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen DJ, Li LJ, Yang XK, Yu T, Leng RX, Pan HF, Ye DQ (2017) Altered microRNAs expression in T cells of patients with SLE involved in the lack of vitamin D. Oncotarget 8(37):62099–62110.  https://doi.org/10.18632/oncotarget.19062 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA (2011) Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 244(1):55–74.  https://doi.org/10.1111/j.1600-065X.2011.01055.x CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alanen HI, Williamson RA, Howard MJ, Hatahet FS, Salo KE, Kauppila A, Kellokumpu S, Ruddock LW (2006) ERp27, a new non-catalytic endoplasmic reticulum-located human protein disulfide isomerase family member, interacts with ERp57. J Biol Chem 281(44):33727–33738.  https://doi.org/10.1074/jbc.M604314200 CrossRefPubMedGoogle Scholar
  26. 26.
    Shin Y, Kim DY, Ko JY, Woo YM, Park JH (2018) Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis. FASEB J 32(7):3574–3582.  https://doi.org/10.1096/fj.201700923R CrossRefPubMedGoogle Scholar
  27. 27.
    Tian NY, Qi YJ, Hu Y, Yin B, Yuan JG, Qiang BQ, Peng XZ, Han W (2018) RNA-binding protein UNR promotes glioma cell migration and regulates the expression of ribosomal protein L9. Chin Med Sci J 33(3):143–151.  https://doi.org/10.24920/11815 CrossRefPubMedGoogle Scholar
  28. 28.
    D'Cruz DP, Khamashta MA, Hughes GR (2007) Systemic lupus erythematosus. Lancet 369(9561):587–596.  https://doi.org/10.1016/S0140-6736(07)60279-7 CrossRefPubMedGoogle Scholar
  29. 29.
    Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121.  https://doi.org/10.1056/NEJMra1100359 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W, Zhang Q, Zhang P, Yu X, Xia Y, Yi N, Gao F, Wang L, Yung S, Chan TM, Sawalha AH, Richardson B, Gershwin ME, Li N, Lu Q (2014) DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun 54:127–136.  https://doi.org/10.1016/j.jaut.2014.07.002 CrossRefPubMedGoogle Scholar
  31. 31.
    Shi L, Zhang Z, Yu AM, Wang W, Wei Z, Akhter E, Maurer K, Costa Reis P, Song L, Petri M, Sullivan KE (2014) The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One 9(5):e93846.  https://doi.org/10.1371/journal.pone.0093846 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodriguez-Pla A, Patel P, Maecker HT, Rossello-Urgell J, Baldwin N, Bennett L, Cantrell V, Baisch J, Punaro M, Gotte A, Nassi L, Wright T, Palucka AK, Banchereau J, Pascual V (2014) IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes. J Immunol 192(12):5586–5598.  https://doi.org/10.4049/jimmunol.1301319 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16(12):939–946.  https://doi.org/10.1177/0961203307084158 CrossRefPubMedGoogle Scholar
  34. 34.
    Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29(7):749–754.  https://doi.org/10.1007/s00296-008-0758-6 CrossRefPubMedGoogle Scholar
  35. 35.
    Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781.  https://doi.org/10.4049/jimmunol.0904060 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075.  https://doi.org/10.1002/art.24436 CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, Shen N (2010) MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 62(11):3425–3435.  https://doi.org/10.1002/art.27632 CrossRefPubMedGoogle Scholar
  38. 38.
    Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, Bruner GR, Harley JB, Ojwang JO (2010) Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5(5):e10344.  https://doi.org/10.1371/journal.pone.0010344 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wu Y, Zhang F, Ma J, Zhang X, Wu L, Qu B, Xia S, Chen S, Tang Y, Shen N (2015) Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Res Ther 17:131.  https://doi.org/10.1186/s13075-015-0632-3 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111(3):1002–1007.  https://doi.org/10.1073/pnas.1313768111 CrossRefPubMedGoogle Scholar
  41. 41.
    Wu GC, Li J, Leng RX, Li XP, Li XM, Wang DG, Pan HF, Ye DQ (2017) Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 8(14):23650–23663.  https://doi.org/10.18632/oncotarget.15569 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Haywood ME, Rose SJ, Horswell S, Lees MJ, Fu G, Walport MJ, Morley BJ (2006) Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun 7(3):250–263.  https://doi.org/10.1038/sj.gene.6364294 CrossRefPubMedGoogle Scholar
  43. 43.
    Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247.  https://doi.org/10.1101/gad.251926.114 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Shang X, Li G, Liu H, Li T, Liu J, Zhao Q, Wang C (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular circinoma development. Medicine 95(22):e3811.  https://doi.org/10.1097/MD.0000000000003811 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang YG, Yang HL, Long Y, Li WL (2016) Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG 123(13):2113–2118.  https://doi.org/10.1111/1471-0528.13897 CrossRefPubMedGoogle Scholar
  46. 46.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919.  https://doi.org/10.1038/srep30919 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136.  https://doi.org/10.1016/j.cca.2015.02.018 CrossRefPubMedGoogle Scholar
  48. 48.
    Ouyang Q, Wu J, Jiang Z, Zhao J, Wang R, Lou A, Zhu D, Shi GP, Yang M (2017) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem 42(2):651–659.  https://doi.org/10.1159/000477883 CrossRefPubMedGoogle Scholar
  49. 49.
    Zheng J, Li Z, Wang T, Zhao Y, Wang Y (2017) Microarray expression profile of circular RNAs in plasma from primary biliary cholangitis patients. Cell Physiol Biochem 44(4):1271–1281.  https://doi.org/10.1159/000485487 CrossRefPubMedGoogle Scholar
  50. 50.
    Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L, Qin W (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169.  https://doi.org/10.3233/CBM-150552 CrossRefPubMedGoogle Scholar
  51. 51.
    Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, Yan Y, Jia B, Liu H, Li S, Zheng W (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8(12):16020–16025PubMedPubMedCentralGoogle Scholar
  52. 52.
    Ouyang Q, Huang Q, Jiang Z, Zhao J, Shi GP, Yang M (2018) Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol Immunol 101:531–538.  https://doi.org/10.1016/j.molimm.2018.07.029 CrossRefPubMedGoogle Scholar
  53. 53.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358.  https://doi.org/10.1016/j.cell.2011.07.014 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037.  https://doi.org/10.1038/ng2079 CrossRefPubMedGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  • Shipeng Li
    • 1
  • Junmei Zhang
    • 1
  • Xiaohua Tan
    • 1
  • Jianghong Deng
    • 1
  • Yan Li
    • 1
  • Yurong Piao
    • 1
  • Chao Li
    • 1
  • Wenxu Yang
    • 1
  • Wenxiu Mo
    • 1
  • Jiapeng Sun
    • 1
  • Fei Sun
    • 1
  • Tongxin Han
    • 1
  • Jiang Wang
    • 1
  • Weiying Kuang
    • 1
  • Caifeng Li
    • 1
  1. 1.Department of Rheumatology and Immunology, Beijing Children’s HospitalCapital Medical University, National Center for Children’s HealthBeijingChina

Personalised recommendations