Clinical Rheumatology

, Volume 38, Issue 5, pp 1339–1350 | Cite as

Microarray expression profile of circular RNAs and mRNAs in children with systemic lupus erythematosus

  • Shipeng Li
  • Junmei Zhang
  • Xiaohua Tan
  • Jianghong Deng
  • Yan Li
  • Yurong Piao
  • Chao Li
  • Wenxu Yang
  • Wenxiu Mo
  • Jiapeng Sun
  • Fei Sun
  • Tongxin Han
  • Jiang Wang
  • Weiying Kuang
  • Caifeng LiEmail author
Original Article



Recently, it was reported that circular RNAs (circRNAs) play the crucial role in many physiological and biological processes and can be used as biomarkers. However, the information about circRNAs in children with systemic lupus erythematosus (SLE) is limited. The aim of this study is to determine the expression of circRNAs in children with SLE and investigate the significance of circRNA for diagnosing SLE.


Microarray profile of circRNAs and mRNAs was performed for identifying the changes in expression of circRNAs and mRNAs between children with SLE and healthy children. Quantitative polymerase chain reaction (qPCR) was used to confirm the results. Spearman correlation test was performed to assess the correlation between circRNAs and clinical variables. The receiver operating characteristic (ROC) curve was calculated for evaluating the diagnostic value.


A comparison between the children with SLE and healthy children revealed that 348 circRNAs and 1162 mRNAs were expressed differentially. The authors constructed a complex circRNA target network consisting of 307 matched circRNA-mRNA pairs for 124 differentially expressed circRNAs (74 circRNAs were upregulated, and 50 circRNAs were downregulated) and 142 differentially expressed mRNAs (83 mRNAs were upregulated, and 59 mRNAs were downregulated) by using gene co-expression network analysis. The competing for endogenous RNA (ceRNA) network includes 42 differentially expressed circRNAs, 41 differentially expressed mRNAs, and 71 predicted miRNAs. Among these SLE patients, we detected that the hsa_circ_0021372 and hsa_circ_0075699 levels are associated with C3 and C4 levels in children with SLE. The hsa_circ_0057762 level is positively associated with the SLEDAI-2K score. The ROC curves of circRNAs showed that the levels of hsa_circ_0057762 (AUC 0.804, 95% CI 0.607–1.0, P = 0.02) and hsa_circ_0003090 (AUC 0.848, 95% CI 0.688–1.0, P = 0.008) could differentiate the patients with SLE from the healthy controls.


We firstly characterized the expression profiles of circRNA and mRNA in children with SLE and propose herein their possible roles in the pathogenesis of SLE. These results provide novel insight into the mechanisms of SLE pathogenesis, and circRNAs may serve as useful biomarkers for SLE.


Children circRNA Systemic lupus erythematosus 



This work was supported by the National Natural Science Foundation of China (81701604), Beijing Talents Fund (2015000021469G207), Beijing Children’s Hospital Young Investigator (BCHYIPA-2016-14), and Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ201710025019).

Compliance with ethical standards




  1. 1.
    Barnett R (2016) Systemic lupus erythematosus. Lancet (London, England) 387(10029):1711. Google Scholar
  2. 2.
    Qu B, Cao J, Zhang F, Cui H, Teng J, Li J, Liu Z, Morehouse C, Jallal B, Tang Y, Guo Q, Yao Y, Shen N (2015) Type I interferon inhibition of microRNA-146a maturation through up-regulation of monocyte chemotactic protein-induced protein 1 in systemic lupus erythematosus. Arthritis Rheumatol 67(12):3209–3218. Google Scholar
  3. 3.
    Wang W, Mou S, Wang L, Zhang M, Shao X, Fang W, Lu R, Qi C, Fan Z, Cao Q, Wang Q, Fang Y, Ni Z (2015) Up-regulation of serum miR-130b-3p level is associated with renal damage in early lupus nephritis. Sci Rep 5:12644. Google Scholar
  4. 4.
    Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148. Google Scholar
  5. 5.
    Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, Yang S, Zeng Z, Liao W, Ding YQ, Liang L (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget 7(18):26680–26691. Google Scholar
  6. 6.
    Akhter R (2018) Circular RNA and Alzheimer's disease. Adv Exp Med Biol 1087:239–243. Google Scholar
  7. 7.
    Wu HJ, Zhang CY, Zhang S, Chang M, Wang HY (2016) Microarray expression profile of circular RNAs in heart tissue of mice with myocardial infarction-induced heart failure. Cell Physiol Biochem 39(1):205–216. Google Scholar
  8. 8.
    Li LJ, Zhu ZW, Zhao W, Tao SS, Li BZ, Xu SZ, Wang JB, Zhang MY, Wu J, Leng RX, Fan YG, Pan HF, Ye DQ (2018) Circular RNA expression profile and potential function of hsa_circ_0045272 in systemic lupus erythematosus. Immunology 155(1):137–149. Google Scholar
  9. 9.
    Li H, Li K, Lai W, Li X, Wang H, Yang J, Chu S, Wang H, Kang C, Qiu Y (2018) Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta 480:17–25. Google Scholar
  10. 10.
    Zhang MY, Wang JB, Zhu ZW, Li LJ, Liu RS, Yang XK, Leng RX, Li XM, Pan HF, Ye DQ (2018) Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance. Biomed Pharmacother 107:1720–1727. Google Scholar
  11. 11.
    Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12(4):381–388. Google Scholar
  12. 12.
    Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461. Google Scholar
  13. 13.
    Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A 73(11):3852–3856Google Scholar
  14. 14.
    Cocquerelle C, Mascrez B, Hetuin D, Bailleul B (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160Google Scholar
  15. 15.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. Google Scholar
  16. 16.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. Google Scholar
  17. 17.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY) 19(2):141–157. Google Scholar
  18. 18.
    Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777. Google Scholar
  19. 19.
    Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806. Google Scholar
  20. 20.
    Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264. Google Scholar
  21. 21.
    You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610. Google Scholar
  22. 22.
    Cheng J, Wu R, Long L, Su J, Liu J, Wu XD, Zhu J, Zhou B (2017) miRNA-451a targets IFN regulatory factor 8 for the progression of systemic lupus erythematosus. Inflammation 40(2):676–687. Google Scholar
  23. 23.
    Chen DJ, Li LJ, Yang XK, Yu T, Leng RX, Pan HF, Ye DQ (2017) Altered microRNAs expression in T cells of patients with SLE involved in the lack of vitamin D. Oncotarget 8(37):62099–62110. Google Scholar
  24. 24.
    Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA (2011) Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 244(1):55–74. Google Scholar
  25. 25.
    Alanen HI, Williamson RA, Howard MJ, Hatahet FS, Salo KE, Kauppila A, Kellokumpu S, Ruddock LW (2006) ERp27, a new non-catalytic endoplasmic reticulum-located human protein disulfide isomerase family member, interacts with ERp57. J Biol Chem 281(44):33727–33738. Google Scholar
  26. 26.
    Shin Y, Kim DY, Ko JY, Woo YM, Park JH (2018) Regulation of KLF12 by microRNA-20b and microRNA-106a in cystogenesis. FASEB J 32(7):3574–3582. Google Scholar
  27. 27.
    Tian NY, Qi YJ, Hu Y, Yin B, Yuan JG, Qiang BQ, Peng XZ, Han W (2018) RNA-binding protein UNR promotes glioma cell migration and regulates the expression of ribosomal protein L9. Chin Med Sci J 33(3):143–151. Google Scholar
  28. 28.
    D'Cruz DP, Khamashta MA, Hughes GR (2007) Systemic lupus erythematosus. Lancet 369(9561):587–596. Google Scholar
  29. 29.
    Tsokos GC (2011) Systemic lupus erythematosus. N Engl J Med 365(22):2110–2121. Google Scholar
  30. 30.
    Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W, Zhang Q, Zhang P, Yu X, Xia Y, Yi N, Gao F, Wang L, Yung S, Chan TM, Sawalha AH, Richardson B, Gershwin ME, Li N, Lu Q (2014) DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun 54:127–136. Google Scholar
  31. 31.
    Shi L, Zhang Z, Yu AM, Wang W, Wei Z, Akhter E, Maurer K, Costa Reis P, Song L, Petri M, Sullivan KE (2014) The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS One 9(5):e93846. Google Scholar
  32. 32.
    Rodriguez-Pla A, Patel P, Maecker HT, Rossello-Urgell J, Baldwin N, Bennett L, Cantrell V, Baisch J, Punaro M, Gotte A, Nassi L, Wright T, Palucka AK, Banchereau J, Pascual V (2014) IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes. J Immunol 192(12):5586–5598. Google Scholar
  33. 33.
    Dai Y, Huang YS, Tang M, Lv TY, Hu CX, Tan YH, Xu ZM, Yin YB (2007) Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16(12):939–946. Google Scholar
  34. 34.
    Dai Y, Sui W, Lan H, Yan Q, Huang H, Huang Y (2009) Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int 29(7):749–754. Google Scholar
  35. 35.
    Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781. Google Scholar
  36. 36.
    Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, Chen S, Shen N (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075. Google Scholar
  37. 37.
    Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, Shen N (2010) MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum 62(11):3425–3435. Google Scholar
  38. 38.
    Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, Bruner GR, Harley JB, Ojwang JO (2010) Identification of unique microRNA signature associated with lupus nephritis. PLoS One 5(5):e10344. Google Scholar
  39. 39.
    Wu Y, Zhang F, Ma J, Zhang X, Wu L, Qu B, Xia S, Chen S, Tang Y, Shen N (2015) Association of large intergenic noncoding RNA expression with disease activity and organ damage in systemic lupus erythematosus. Arthritis Res Ther 17:131. Google Scholar
  40. 40.
    Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFalpha expression through its interaction with hnRNPL. Proc Natl Acad Sci U S A 111(3):1002–1007. Google Scholar
  41. 41.
    Wu GC, Li J, Leng RX, Li XP, Li XM, Wang DG, Pan HF, Ye DQ (2017) Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget 8(14):23650–23663. Google Scholar
  42. 42.
    Haywood ME, Rose SJ, Horswell S, Lees MJ, Fu G, Walport MJ, Morley BJ (2006) Overlapping BXSB congenic intervals, in combination with microarray gene expression, reveal novel lupus candidate genes. Genes Immun 7(3):250–263. Google Scholar
  43. 43.
    Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247. Google Scholar
  44. 44.
    Shang X, Li G, Liu H, Li T, Liu J, Zhao Q, Wang C (2016) Comprehensive circular RNA profiling reveals that hsa_circ_0005075, a new circular RNA biomarker, is involved in hepatocellular circinoma development. Medicine 95(22):e3811. Google Scholar
  45. 45.
    Zhang YG, Yang HL, Long Y, Li WL (2016) Circular RNA in blood corpuscles combined with plasma protein factor for early prediction of pre-eclampsia. BJOG 123(13):2113–2118. Google Scholar
  46. 46.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919. Google Scholar
  47. 47.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136. Google Scholar
  48. 48.
    Ouyang Q, Wu J, Jiang Z, Zhao J, Wang R, Lou A, Zhu D, Shi GP, Yang M (2017) Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem 42(2):651–659. Google Scholar
  49. 49.
    Zheng J, Li Z, Wang T, Zhao Y, Wang Y (2017) Microarray expression profile of circular RNAs in plasma from primary biliary cholangitis patients. Cell Physiol Biochem 44(4):1271–1281. Google Scholar
  50. 50.
    Qin M, Liu G, Huo X, Tao X, Sun X, Ge Z, Yang J, Fan J, Liu L, Qin W (2016) Hsa_circ_0001649: a circular RNA and potential novel biomarker for hepatocellular carcinoma. Cancer Biomark 16(1):161–169. Google Scholar
  51. 51.
    Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, Yan Y, Jia B, Liu H, Li S, Zheng W (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8(12):16020–16025Google Scholar
  52. 52.
    Ouyang Q, Huang Q, Jiang Z, Zhao J, Shi GP, Yang M (2018) Using plasma circRNA_002453 as a novel biomarker in the diagnosis of lupus nephritis. Mol Immunol 101:531–538. Google Scholar
  53. 53.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell 146(3):353–358. Google Scholar
  54. 54.
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037. Google Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  • Shipeng Li
    • 1
  • Junmei Zhang
    • 1
  • Xiaohua Tan
    • 1
  • Jianghong Deng
    • 1
  • Yan Li
    • 1
  • Yurong Piao
    • 1
  • Chao Li
    • 1
  • Wenxu Yang
    • 1
  • Wenxiu Mo
    • 1
  • Jiapeng Sun
    • 1
  • Fei Sun
    • 1
  • Tongxin Han
    • 1
  • Jiang Wang
    • 1
  • Weiying Kuang
    • 1
  • Caifeng Li
    • 1
    Email author
  1. 1.Department of Rheumatology and Immunology, Beijing Children’s HospitalCapital Medical University, National Center for Children’s HealthBeijingChina

Personalised recommendations