Advertisement

Clinical Rheumatology

, Volume 37, Issue 11, pp 3069–3076 | Cite as

Mono-exponential and bi-exponential model-based diffusion-weighted MR imaging and IDEAL-IQ sequence for quantitative evaluation of sacroiliitis in patients with ankylosing spondylitis

  • Cui Ren
  • Qiao Zhu
  • Huishu Yuan
Original Article
  • 154 Downloads

Abstract

To evaluate the utility of mono-exponential and bi-exponential model-based diffusion-weighted MR imaging and IDEAL-IQ sequence for differentiating the activity of sacroiliitis in ankylosing spondylitis (AS). AS patients were divided into active group (n = 30) and inactive group (n = 28) according to Ankylosing Spondylitis Disease Activity Score (ASDAS) with C-reactive protein (CRP). In addition, 30 healthy volunteers were chosen as healthy group. Subjects were scanned by conventional MRI, diffusion-weighted imaging, and IDEAL-IQ sequence. Apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and fat fraction (FF) values were measured, and their relative values (rADC, rD, rD*, rf) were calculated by the formula ADC (D,D*,f)lesion/ADC (D,D*,f)reference, respectively. The ADC, D, rADC, and rD of active group were the highest among the three groups, followed by inactive and healthy group. However, D* and rD* showed no significant difference among the three groups. FF was significantly higher in inactive group than in healthy and active group. ADC and D had significantly higher AUCs than f for differentiating active group from healthy group, while FF had the highest AUC for distinguishing inactive sacroiliitis from healthy group. DWI and IDEAL-IQ imaging are helpful in quantitatively assessing the activity of sacroiliitis in AS patients.

Keywords

Ankylosing spondylitis Diffusion-weighted MR imaging IDEAL-IQ Sacroiliitis 

Notes

Funding information

This study was supported by the National Scientific Foundation of China (No. 81701648).

Compliance with ethical standards

This prospective study was approved by Institute Ethics Committee and written informed consent was obtained from all participants.

Disclosures

None.

References

  1. 1.
    Braun J, Baraliakos X, Godolias G, Böhm H (2005) Therapy of ankylosing spondylitis–a review. Part I: conventional medical treatment and surgical therapy. Scand J Rheumatol 34:97–108CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mok CC, Li OC, Chan KL, Ho LY, Hui PK (2015) Effect of golimumab and pamidronate on clinical efficacy and MRI inflammation in axial spondyloarthritis: a 48-week open randomized trial. Scand J Rheumatol 44:480–486CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lambert RG, Bakker PA, van der Heijde D, Weber U, Rudwaleit M, Hermann KG et al (2016) Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis 75:1958–1963CrossRefPubMedCentralGoogle Scholar
  4. 4.
    van der Heijde D, Landewé R, Hermann KG, Rudwaleit M, Østergaard M, Oostveen A et al (2007) Is there a preferred method for scoring activity of the spine by magnetic resonance imaging in ankylosing spondylitis? J Rheumatol 34:871–873PubMedPubMedCentralGoogle Scholar
  5. 5.
    Landewe RB, Hermann KG, van der Heijde DM, Baraliakos X, Jurik AG, Lambert RG et al (2005) Scoring sacroiliac joints by magnetic resonance imaging. A multiple-reader reliability experiment. J Rheumatol 32:2050–2055PubMedPubMedCentralGoogle Scholar
  6. 6.
    Maksymowych WP, Inman RD, Salonen D, Dhillon SS, Williams M, Stone M, Conner-spady B, Palsat J, Lambert RGW (2005) Spondyloarthritis research consortium of Canada magnetic resonance imaging index for assessment of sacroiliac joint inflammation in ankylosing spondylitis. Arthritis Rheum 53:703–709CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhang P, Yu K, Guo R, Shah S, Morelli JN, Runge VA et al (2015) Ankylosing spondylitis: correlations between clinical and MRI indices of sacroiliitis activity. Clin Radiol 70:62–66CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Douis H, Davies MA, Sian P (2016) The role of diffusion-weighted MRI (DWI) in the differentiation of benign from malignant skeletal lesions of the pelvis. Eur J Radiol 85:2262–2268CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW (2018) ADC as a useful diagnostic tool for differentiating benign and malignant vertebral bone marrow lesions and compression fractures: a systematic review and meta-analysis. Eur Radiol 28:2890–2902.  https://doi.org/10.1007/s00330-018-5330-5 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Park S, Kwack KS, Chung N, Hwang J, Lee HY, Kim JH (2017) Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions. Skelet Radiol 46:675–683CrossRefGoogle Scholar
  11. 11.
    Ai F, Ai T, Li X, Hu D, Zhang W, Morelli JN (2012) Value of diffusion-weighted magnetic resonance imaging in early diagnosis of ankylosing spondylitis. Rheumatol Int 32:4005–4013CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dallaudiere B, Dautry R, Preux PM, Perozziello A, Lincot J (2014) Schouman-Claeys E, et al .Comparison of apparent diffusion coefficient in spondylarthritis axial active inflammatory lesions and type 1 Modic changes. Eur J Radiol 83:366–370CrossRefGoogle Scholar
  13. 13.
    Bozgeyik Z, Ozgocmen S, Kocakoc E (2008) Role of diffusion-weighted MRI in the detection of early active sacroiliitis. AJR Am J Roentgenol 191:980–986CrossRefGoogle Scholar
  14. 14.
    Sanal HT, Yilmaz S, Simsek I, Cinar M, Erdem H, Pay S et al (2013) Apparent diffusion coefficients of sacroiliitis in patients with established ankylosing spondylitis. Clin Imaging 37:734–739CrossRefGoogle Scholar
  15. 15.
    Boy FN, Kayhan A, Karakas HM, Unlu-Ozkan F, Silte D, Aktas İ (2014) The role of multi-parametric MR imaging in the detection of early inflammatory sacroiliitis according to ASAS criteria. Eur J Radiol 83:989–996CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Maksymowych WP, Morency N, Conner-Spady B, Lambert RG (2013) Suppression of inflammation and effects on new bone formation in ankylosing spondylitis: evidence for a window of opportunity in disease modification. Ann Rheum Dis 72:23–28CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Baraliakos X, Heldmann F, Callhoff J, Listing J, Appelboom T, Brandt J, van den Bosch F, Breban M, Burmester GR, Dougados M, Emery P, Gaston H, Grunke M, van der Horst-Bruinsma IE, Landewé R, Leirisalo-Repo M, Sieper J, de Vlam K, Pappas D, Kiltz U, van der Heijde D, Braun J (2014) Which spinal lesions are associated with new bone formation in patients with ankylosing spondylitis treated with anti-TNF agents? A long-term observational study using MRI and conventional radiography. Ann Rheum Dis 73:1819–1825CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Song IH, Hermann KG, Haibel H, Althoff CE, Poddubnyy D, Listing J et al (2016) Inflammatory and fatty lesions in the spine and sacroiliac joints on whole-body MRI in early axial spondyloarthritis--3-year data of the ESTHER trial. Semin Arthritis Rheum 45:404–410CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Machado P, Landewé R, Lie E, Kvien TK, Braun J, Baker D et al (2011) Ankylosing spondylitis disease activity score (ASDAS): defining cut-off values for disease activity states and improvement scores. Ann Rheum Dis 70:47–53CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Yan C, Xu J, Xiong W, Wei Q, Feng R, Wu Y, Liu Q, Li C, Chan Q, Xu Y (2017) Use of intravoxel incoherent motion diffusion-weighted MR imaging for assessment of treatment response to invasive fungal infection in the lung. Eur Radiol 27:212–221CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zhao YH, Li SL, Liu ZY, Chen X, Zhao XC, Hu SY, Liu ZH, MS YJM, Chan Q, Liang CH (2015) Detection of active Sacroiliitis with ankylosing spondylitis through Intravoxel incoherent motion diffusion-weighted MR imaging. Eur Radiol 25:2754–2763CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Guo W, Luo D, Lin M, Wu B, Li L, Zhao Y, Yang L, Zhou C (2016) Pretreatment intra-voxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in predicting induction chemotherapy response in locally advanced Hypopharyngeal carcinoma. Medicine (Baltimore) 95:e3039CrossRefGoogle Scholar
  23. 23.
    Liau J, Shiehmorteza M, Girard OM, Sirlin CB, Bydder M (2013) Evaluation of MRI fat fraction in the liver and spine pre and post SPIO infusion. Magn Reson Imaging 31(6):1012–1016CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Neubauer H, Evangelista L, Morbach H, Girschick H, Prelog M, Köstler H et al (2012) Diffusion-weighted MRI of bone marrow oedema, soft tissue oedema and synovitis in paediatric patients: feasibility and initial experience. Pediatr Rheumatol Online J 31:20CrossRefGoogle Scholar
  25. 25.
    Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Padhani AR, van Ree K, Collins DJ, D'Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. AJR Am J Roentgenol 200:163–170CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34:1163–1177CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Herneth AM, Friedrich K, Weidekamm C, Schibany N, Krestan C, Czerny C et al (2005) Diffusion weighted imaging of bone marrow pathologies. Eur J Radiol 55:74–83CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wang F, Wang Y, Zhou Y, Liu C, Xie L, Zhou Z, Liang D, Shen Y, Yao Z, Liu J (2017) Comparison between types I and II epithelial ovarian cancer using histogram analysis of monoexponential, biexponential, and stretched-exponential diffusion models. J Magn Reson Imaging 46:1797–1809CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Zhang M, Zhou L, Huang N, Zeng H, Liu S, Liu L (2017) Assessment of active and inactive sacroiliitis in patients with ankylosing spondylitis using quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 46:71–78CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Henkelman RM (1990) Does IVIM measure classical perfusion? Magn Reson Med 16:470–475CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Qi J, Olsen NJ, Price RR, Winston JA, Park JH (2008) Diffusion-weighted imaging of inflammatory myopathies: polymyositis and dermatomyositis. J Magn Reson Imaging 27:212–217CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T (2013) Leach MO,et al. measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 23:428–434CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Kakite S, Dyvorne H, Besa C, Cooper N, Facciuto M, Donnerhack C, Taouli B (2015) Hepatocellular carcinoma: short-term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging 41:149–156CrossRefGoogle Scholar
  35. 35.
    Hu L, Zha YF, Wang L, Li L, Xing D, Gong W, Li L, Xing D, Gong W, Wang J, Lin Y, Zeng FF, Lu XS (2018) Quantitative evaluation of vertebral microvascular permeability and fat fraction in Alloxan-induced diabetic rabbits. Radiology 287:128–136CrossRefGoogle Scholar
  36. 36.
    Machado PM, Baraliakos X, van der Heijde D, Braun J, Landewé R (2016) MRI vertebral corner inflammation followed by fat deposition is the strongest contributor to the development of new bone at the same vertebral corner: a multilevel longitudinal analysis in patients with ankylosing spondylitis. Ann Rheum Dis 75:1486–1493CrossRefGoogle Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2018

Authors and Affiliations

  1. 1.Peking University Third Hospital, Department of RadiologyBeijingPeople’s Republic of China

Personalised recommendations