Advertisement

Prolactin, autoimmunity, and motherhood: when should women avoid breastfeeding?

  • Vânia Vieira BorbaEmail author
  • Yehuda Shoenfeld
Review Article
Part of the following topical collections:
  1. Autoimmune Collection 2018

Abstract

The sexual dimorphic prevalence of autoimmunity represents one of the most alluring observations among the mosaic of autoimmunity. Sex hormones are believed to be a mainstay of this asymmetry. The greater prevalence of autoimmunity among fertile women, disease onset/relapses during pregnancy, and postpartum are some of the points that support this theory. Undeniably, motherhood represents one of the most remarkable challenges for the immune system that not only has to allow for the conceptus but also deal with extraordinary hormonal alterations. Prolactin has a recognized immune-stimulatory effect, mainly inhibiting the negative selection of autoreactive B lymphocytes. In accordance, hyperprolactinemia has been associated with several autoimmune diseases, interfering with its pathogenesis and activity. During the pregnancy and lactation period, assorted autoimmune patients experience relapses, suggesting an active interference from increased levels of prolactin. This association was found to be significant in systemic lupus erythematosus, rheumatoid arthritis, and peripartum cardiomyopathy. Furthermore, treatment with bromocriptine has shown beneficial effects specially among systemic lupus erythematosus patients. In this review, we attempt to provide a critical overview of the link between prolactin, autoimmune diseases, and motherhood, emphasizing whether breastfeeding should be avoided among women, both with diagnosed disease or high risk for its development.

Keywords

Autoimmunity Breastfeeding Multiple sclerosis Prolactin Rheumatoid arthritis Sex hormones Systemic lupus erythematosus Systemic sclerosis 

Abbreviations

HLA

Human leukocyte antigen

IL

Interleukin

IFN

Interferon

MHC

Major histocompatibility complex

PIBF

Progesterone-induced blocking factor

PRL-GH

Prolactin-growth hormone

RNA

Ribonucleic acid

Th

T helper cells

TGF

Transforming growth factor

TNF

Tumor necrosis factor

Treg

T regulatory cells

Notes

Funding

This work is supported by the grant of the Government of the Russian Federation for the state support of scientific research carried out under the supervision of leading scientists, agreement 14.W03.31.0009, on the basis of SPbU projects 15.34.3.2017 and 15.64.785.2017.

Compliance with ethical standards

Disclosures

None.

References

  1. 1.
    Shoenfeld Y, Isenberg DA (1989) The mosaic of autoimmunity. Immunol Today 10(4):123–126.  https://doi.org/10.1016/0167-5699(89)90245-4 Google Scholar
  2. 2.
    Piccinni MP, Lombardelli L, Logiodice F, Kullolli O, Parronchi P, Romagnani S (2016) How pregnancy can affect autoimmune diseases progression? Clin Mol Allergy 14(11):11.  https://doi.org/10.1186/s12948-016-0048-x Google Scholar
  3. 3.
    Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN (2018) The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9:1091.  https://doi.org/10.3389/fphys.2018.01091 Google Scholar
  4. 4.
    Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y (2016) Sex-based differences in autoimmune diseases. Ann Ist Super Sanita 52(2):205–212.  https://doi.org/10.4415/ann_16_02_12 Google Scholar
  5. 5.
    Groen B, van der Wijk AE, van den Berg PP, Lefrandt JD, van den Berg G, Sollie KM, de Vos P, Links TP, Faas MM (2015) Immunological adaptations to pregnancy in women with type 1 diabetes. Sci Rep 5:13618.  https://doi.org/10.1038/srep13618 Google Scholar
  6. 6.
    Edey LF, Georgiou H, O'Dea KP, Mesiano S, Herbert BR, Lei K, Hua R, Markovic D, Waddington SN, MacIntyre D, Bennett P, Takata M, Johnson MR (2018) Progesterone, the maternal immune system and the onset of parturition in the mouse. Biol Reprod 98(3):376–395.  https://doi.org/10.1093/biolre/iox146 Google Scholar
  7. 7.
    Orbach H, Zandman-Goddard G, Amital H, Barak V, Szekanecz Z, Szucs G, Danko K, Nagy E, Csepany T, Carvalho JF, Doria A, Shoenfeld Y (2007) Novel biomarkers in autoimmune diseases: prolactin, ferritin, vitamin D, and TPA levels in autoimmune diseases. Ann N Y Acad Sci 1109:385–400.  https://doi.org/10.1196/annals.1398.044 Google Scholar
  8. 8.
    Saha S, Gonzalez J, Rosenfeld G, Keiser H, Peeva E (2009) Prolactin alters the mechanisms of B cell tolerance induction. Arthritis Rheum 60(6):1743–1752.  https://doi.org/10.1002/art.24500 Google Scholar
  9. 9.
    Peeva E, Zouali M (2005) Spotlight on the role of hormonal factors in the emergence of autoreactive B-lymphocytes. Immunol Lett 101(2):123–143.  https://doi.org/10.1016/j.imlet.2005.05.014 Google Scholar
  10. 10.
    Mackern-Oberti JP, Jara EL, Riedel CA, Kalergis AM (2017) Hormonal modulation of dendritic cells differentiation, maturation and function: implications for the initiation and progress of systemic autoimmunity. Arch Immunol Ther Exp 65(2):123–136.  https://doi.org/10.1007/s00005-016-0418-6 Google Scholar
  11. 11.
    Buskila D, Berezin M, Gur H, Lin HC, Alosachie I, Terryberry JW, Barka N, Shen B, Peter JB, Shoenfeld Y (1995) Autoantibody profile in the sera of women with hyperprolactinemia. J Autoimmun 8(3):415–424.  https://doi.org/10.1006/jaut.1995.0033 Google Scholar
  12. 12.
    Flores-Espinosa P, Preciado-Martinez E, Mejia-Salvador A, Sedano-Gonzalez G, Bermejo-Martinez L, Parra-Covarruvias A, Estrada-Gutierrez G, Vega-Sanchez R, Mendez I, Quesada-Reyna B, Olmos-Ortiz A, Zaga-Clavellina V (2017) Selective immuno-modulatory effect of prolactin upon pro-inflammatory response in human fetal membranes. J Reprod Immunol 123:58–64.  https://doi.org/10.1016/j.jri.2017.09.004 Google Scholar
  13. 13.
    Zhang F, Xia H, Shen M, Li X, Qin L, Gu H, Xu X (2016) Are prolactin levels linked to suction pressure? Breastfeed Med 11:461–468.  https://doi.org/10.1089/bfm.2015.0083 Google Scholar
  14. 14.
    Stuebe AM, Meltzer-Brody S, Pearson B, Pedersen C, Grewen K (2015) Maternal neuroendocrine serum levels in exclusively breastfeeding mothers. Breastfeed Med 10(4):197–202.  https://doi.org/10.1089/bfm.2014.0164 Google Scholar
  15. 15.
    Arango MT, Perricone C, Kivity S, Cipriano E, Ceccarelli F, Valesini G, Shoenfeld Y (2017) HLA-DRB1 the notorious gene in the mosaic of autoimmunity. Immunol Res 65(1):82–98.  https://doi.org/10.1007/s12026-016-8817-7 Google Scholar
  16. 16.
    Shelly S, Boaz M, Orbach H (2012) Prolactin and autoimmunity. Autoimmun Rev 11(6–7):A465–A470.  https://doi.org/10.1016/j.autrev.2011.11.009 Google Scholar
  17. 17.
    Leanos-Miranda A, Cardenas-Mondragon G (2006) Serum free prolactin concentrations in patients with systemic lupus erythematosus are associated with lupus activity. Rheumatology (Oxford) 45(1):97–101.  https://doi.org/10.1093/rheumatology/kei115
  18. 18.
    Orbach H, Zandman-Goddard G, Boaz M, Agmon-Levin N, Amital H, Szekanecz Z, Szucs G, Rovensky J, Kiss E, Doria A, Ghirardello A, Gomez-Arbesu J, Stojanovich L, Ingegnoli F, Meroni PL, Rozman B, Blank M, Shoenfeld Y (2012) Prolactin and autoimmunity: hyperprolactinemia correlates with serositis and anemia in SLE patients. Clin Rev Allergy Immunol 42(2):189–198.  https://doi.org/10.1007/s12016-011-8256-0 Google Scholar
  19. 19.
    Jara LJ, Pacheco-Reyes H, Medina G, Angeles U, Cruz-Cruz P, Saavedra MA (2007) Prolactin levels are associated with lupus activity, lupus anticoagulant, and poor outcome in pregnancy. Ann N Y Acad Sci 1108:218–226Google Scholar
  20. 20.
    Praprotnik S, Agmon-Levin N, Porat-Katz BS, Blank M, Meroni PL, Cervera R, Miesbach W, Stojanovich L, Szyper-Kravitz M, Rozman B, Tomsic M, Shoenfeld Y (2010) Prolactin’s role in the pathogenesis of the antiphospholipid syndrome. Lupus 19(13):1515–1519.  https://doi.org/10.1177/0961203310373781 Google Scholar
  21. 21.
    Karlson EW, Mandl LA, Hankinson SE, Grodstein F (2004) Do breast-feeding and other reproductive factors influence future risk of rheumatoid arthritis? Results from the Nurses' Health Study. Arthritis Rheum 50(11):3458–3467.  https://doi.org/10.1002/art.20621
  22. 22.
    Olsen NJ, Kovacs WJ (2002) Hormones, pregnancy, and rheumatoid arthritis. J Gend Specif Med 5(4):28–37Google Scholar
  23. 23.
    Taraborelli M, Ramoni V, Brucato A, Airo P, Bajocchi G, Bellisai F, Biasi D, Blagojevic J, Canti V, Caporali R, Caramaschi P, Chiarolanza I, Codullo V, Cozzi F, Cuomo G, Cutolo M, De Santis M, De Vita S, Di Poi E, Doria A, Faggioli P, Favaro M, Ferraccioli G, Ferri C, Foti R, Gerosa A, Gerosa M, Giacuzzo S, Giani L, Giuggioli D, Imazio M, Iudici M, Iuliano A, Leonardi R, Limonta M, Lojacono A, Lubatti C, Matucci-Cerinic M, Mazzone A, Meroni M, Meroni PL, Mosca M, Motta M, Muscara M, Nava S, Padovan M, Pagani G, Paolazzi G, Peccatori S, Ravagnani V, Riccieri V, Rosato E, Rovere-Querini P, Salsano F, Santaniello A, Scorza R, Tani C, Valentini G, Valesini G, Vanoli M, Vigone B, Zeni S, Tincani A (2012) Brief report: successful pregnancies but a higher risk of preterm births in patients with systemic sclerosis: an Italian multicenter study. Arthritis and rheumatism 64(6):1970–1977.  https://doi.org/10.1002/art.34350
  24. 24.
    Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V, Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen NQ, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler H (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128(3):589–600.  https://doi.org/10.1016/j.cell.2006.12.036
  25. 25.
    Langer-Gould A, Gupta R, Huang S, Hagan A, Atkuri K, Leimpeter AD, Albers KB, Greenwood E, Van Den Eeden SK, Steinman L, Nelson LM (2010) Interferon-gamma-producing T cells, pregnancy, and postpartum relapses of multiple sclerosis. Arch Neurol 67(1):51–57.  https://doi.org/10.1001/archneurol.2009.304 Google Scholar
  26. 26.
    Borchers AT, Naguwa SM, Keen CL, Gershwin ME (2010) The implications of autoimmunity and pregnancy. J Autoimmun 34(3):J287–J299.  https://doi.org/10.1016/j.jaut.2009.11.015 Google Scholar
  27. 27.
    Jara LJ, Medina G, Saavedra MA, Vera-Lastra O, Navarro C (2011) Prolactin and autoimmunity. Clin Rev Allergy Immunol 40(1):50–59.  https://doi.org/10.1007/s12016-009-8185-3 Google Scholar
  28. 28.
    Song GG, Lee YH (2017) Circulating prolactin level in systemic lupus erythematosus and its correlation with disease activity: a meta-analysis. Lupus 26(12):1260–1268.  https://doi.org/10.1177/0961203317693094 Google Scholar
  29. 29.
    Cardenas-Mondragon G, Ulloa-Aguirre A, Isordia-Salas I, Goffin V, Leanos-Miranda A (2007) Elevated serum bioactive prolactin concentrations in patients with systemic lupus erythematosus are associated with disease activity as disclosed by homologous receptor bioassays. J Rheumatol 34(7):1514–1521Google Scholar
  30. 30.
    Saha S, Tieng A, Pepeljugoski KP, Zandamn-Goddard G, Peeva E (2011) Prolactin, systemic lupus erythematosus, and autoreactive B cells: lessons learnt from murine models. Clin Rev Allergy Immunol 40(1):8–15.  https://doi.org/10.1007/s12016-009-8182-6 Google Scholar
  31. 31.
    Leanos-Miranda A, Cardenas-Mondragon G, Ulloa-Aguirre A, Isordia-Salas I, Parra A, Ramirez-Peredo J (2007) Anti-prolactin autoantibodies in pregnant women with systemic lupus erythematosus: maternal and fetal outcome. Lupus 16(5):342–349.  https://doi.org/10.1177/0961203307078197 Google Scholar
  32. 32.
    Qian Q, Liuqin L, Hao L, Shiwen Y, Zhongping Z, Dongying C, Fan L, Hanshi X, Xiuyan Y, Yujin Y (2015) The effects of bromocriptine on preventing postpartum flare in systemic lupus erythematosus patients from South China. J Immunol Res 2015:316965–316966.  https://doi.org/10.1155/2015/316965 Google Scholar
  33. 33.
    Jara LJ, Cruz-Cruz P, Saavedra MA, Medina G, Garcia-Flores A, Angeles U, Miranda-Limon JM (2007) Bromocriptine during pregnancy in systemic lupus erythematosus: a pilot clinical trial. Ann N Y Acad Sci 1110:297–304.  https://doi.org/10.1196/annals.1423.031 Google Scholar
  34. 34.
    Wallaschofski H, Lohmann T, Hild E, Kobsar A, Siegemund A, Spilcke-Liss E, Hentschel B, Stumpf C, Daniel WG, Garlichs CD, Eigenthaler M (2006) Enhanced platelet activation by prolactin in patients with ischemic stroke. Thromb Haemost 96(1):38–44.  https://doi.org/10.1160/th05-09-0634 Google Scholar
  35. 35.
    Vera-Lastra O, Jara LJ, Espinoza LR (2002) Prolactin and autoimmunity. Autoimmun Rev 1(6):360–364Google Scholar
  36. 36.
    Tang MW, Garcia S, Gerlag DM, Tak PP, Reedquist KA (2017) Insight into the endocrine system and the immune system: a review of the inflammatory role of prolactin in rheumatoid arthritis and psoriatic arthritis. Front Immunol 8:720.  https://doi.org/10.3389/fimmu.2017.00720 Google Scholar
  37. 37.
    Fojtikova M, Tomasova Studynkova J, Filkova M, Lacinova Z, Gatterova J, Pavelka K, Vencovsky J, Senolt L (2010) Elevated prolactin levels in patients with rheumatoid arthritis: association with disease activity and structural damage. Clin Exp Rheumatol 28(6):849–854Google Scholar
  38. 38.
    Jorgensen C, Picot MC, Bologna C, Sany J (1996) Oral contraception, parity, breast feeding, and severity of rheumatoid arthritis. Ann Rheum Dis 55(2):94–98Google Scholar
  39. 39.
    Whyte A, Williams RO (1988) Bromocriptine suppresses postpartum exacerbation of collagen-induced arthritis. Arthritis Rheum 31(7):927–928Google Scholar
  40. 40.
    Shahin AA, Abdoh S, Abdelrazik M (2002) Prolactin and thyroid hormones in patients with systemic sclerosis: correlations with disease manifestations and activity. Z Rheumatol 61(6):703–709.  https://doi.org/10.1007/s00393-002-0413-7 Google Scholar
  41. 41.
    Steinman L (2014) Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol 32:257–281.  https://doi.org/10.1146/annurev-immunol-032713-120227 Google Scholar
  42. 42.
    Nagy E, Berczi I, Wren GE, Asa SL, Kovacs K (1983) Immunomodulation by bromocriptine. Immunopharmacology 6(3):231–243Google Scholar
  43. 43.
    Correale J, Farez MF, Ysrraelit MC (2014) Role of prolactin in B cell regulation in multiple sclerosis. J Neuroimmunol 269(1–2):76–86.  https://doi.org/10.1016/j.jneuroim.2014.02.007 Google Scholar
  44. 44.
    Pakpoor J, Disanto G, Lacey MV, Hellwig K, Giovannoni G, Ramagopalan SV (2012) Breastfeeding and multiple sclerosis relapses: a meta-analysis. J Neurol 259(10):2246–2248.  https://doi.org/10.1007/s00415-012-6553-z Google Scholar
  45. 45.
    Hellwig K, Rockhoff M, Herbstritt S, Borisow N, Haghikia A, Elias-Hamp B, Menck S, Gold R, Langer-Gould A (2015) Exclusive breastfeeding and the effect on postpartum multiple sclerosis relapses. JAMA Neurol 72(10):1132–1138.  https://doi.org/10.1001/jamaneurol.2015.1806 Google Scholar
  46. 46.
    Hilfiker-Kleiner D, Sliwa K (2014) Pathophysiology and epidemiology of peripartum cardiomyopathy. Nat Rev Cardiol 11(6):364–370.  https://doi.org/10.1038/nrcardio.2014.37 Google Scholar
  47. 47.
    Karaye KM, Henein MY (2013) Peripartum cardiomyopathy: a review article. Int J Cardiol 164(1):33–38.  https://doi.org/10.1016/j.ijcard.2011.11.069 Google Scholar
  48. 48.
    Haghikia A, Kaya Z, Schwab J, Westenfeld R, Ehlermann P, Bachelier K, Oettl R, von Kaisenberg CS, Katus HA, Bauersachs J, Hilfiker-Kleiner D (2015) Evidence of autoantibodies against cardiac troponin I and sarcomeric myosin in peripartum cardiomyopathy. Basic Res Cardiol 110(6):60.  https://doi.org/10.1007/s00395-015-0517-2 Google Scholar
  49. 49.
    Hilfiker-Kleiner D, Haghikia A, Berliner D, Vogel-Claussen J, Schwab J, Franke A, Schwarzkopf M, Ehlermann P, Pfister R, Michels G, Westenfeld R, Stangl V, Kindermann I, Kuhl U, Angermann CE, Schlitt A, Fischer D, Podewski E, Bohm M, Sliwa K, Bauersachs J (2017) Bromocriptine for the treatment of peripartum cardiomyopathy: a multicentre randomized study. Eur Heart J 38(35):2671–2679.  https://doi.org/10.1093/eurheartj/ehx355 Google Scholar
  50. 50.
    Arrigo M, Blet A, Mebazaa A (2017) Bromocriptine for the treatment of peripartum cardiomyopathy: welcome on BOARD. Eur Heart J 38(35):2680–2682.  https://doi.org/10.1093/eurheartj/ehx428 Google Scholar

Copyright information

© International League of Associations for Rheumatology (ILAR) 2019

Authors and Affiliations

  1. 1.Department ‘A’ of Internal MedicineCoimbra University Hospital CentreCoimbraPortugal
  2. 2.Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Zabludowicz Center for Autoimmune Diseases, Sheba Medical CenterTel Aviv UniversityTel HashomerIsrael
  4. 4.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  5. 5.Laboratory of the Mosaics of AutoimmunitySaint Petersburg State UniversitySaint PetersburgRussian Federation

Personalised recommendations