Advertisement

Copula-based approach coupling information diffusion distribution for slope reliability analysis

  • Xinlong Zhou
  • Guang Zhang
  • Shaohua HuEmail author
  • Junzhe Li
  • Dequan Xuan
  • Chang Lv
Original Paper
  • 42 Downloads

Abstract

Uncertain probability distributions and interdependencies of geotechnical parameters have profound impacts on slope reliability analysis, especially under incomplete probabilistic information. In this paper, a copula-based approach coupling information diffusion (ID) distribution is proposed to reduce such uncertainties. Firstly, ID theory is introduced to establish marginal distribution of strength parameter. Copulas are subsequently performed to characterize the corresponding dependence structure and link the proposed ID margins. At last, equivalent samples are simulated and plugged into Monte Carlo simulation (MCS) to estimate slope reliability. The effect of the proposed method is validated by a slope case. Results show that the proposed ID algorithm holds remarkable superiority in estimating the marginal distribution with considering random volatility of geotechnical parameter. For slope reliability, both marginal distributions and interdependencies of geotechnical parameters barely affect the factor of safety (FS) but significantly impact failure probability (pf). Unreasonable estimation of probability distribution may lead to large deviation in calculation of slope failure probability. Comparably, the proposed copula-based approach coupling ID distribution can give a reasonable and robust reliability results with considering random volatility.

Keywords

Slope reliability Copulas Dependence structure Random volatility Information diffusion 

Notes

Funding information

This work was supported by the CRSRI Open Research Program (CKWV2016388/KY), the National Natural Science Foundation of China (51609184), Hubei province technical innovation special major project (2019ACA143), and the National Key Research and Development Program of China (2017YFC0804600).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723.  https://doi.org/10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  2. Chen Z, Meng X, Yin Y et al (2016) Landslide research in China. Q J Eng Geol Hydrogeol 49:279–285.  https://doi.org/10.1144/qjegh2016-100 CrossRefGoogle Scholar
  3. Chen YF, Ling XM, Liu MM et al (2018) Statistical distribution of hydraulic conductivity of rocks in deep-incised valleys, Southwest China. J Hydrol 566:216–226.  https://doi.org/10.1016/j.jhydrol.2018.09.016 CrossRefGoogle Scholar
  4. Ching J, Phoon KK, Stuedlein AW, Jaksa M (2019) Identification of sample path smoothness in soil spatial variability. Struct Saf 81:101870.  https://doi.org/10.1016/j.strusafe.2019.101870 CrossRefGoogle Scholar
  5. Chu X, Li L, Cheng Y (2019) Risk assessment of slope failure using assumption of maximum area of sliding mass and factor of safety equal to unit. Adv Civ Eng 2019:1–11.  https://doi.org/10.1155/2019/6268079 CrossRefGoogle Scholar
  6. Frees EW, Valdez EA (1998) Understanding relationships using copulas. North Am Actuar J 2:1–25CrossRefGoogle Scholar
  7. Gong FQ, Hou SQ, Yan X (2013) Probability model deduction method of Mohr-coulomb criteria parameters based on normal information diffusion principle. Chinese J Rock Mech Eng 32:2225–2234 (in Chinese)Google Scholar
  8. Gong W, Juang CH, Martin JR (2016) A new framework for probabilistic analysis of the performance of a supported excavation in clay considering spatial variability. Géotechnique 67:546–552.  https://doi.org/10.1680/jgeot.15.p.268 CrossRefGoogle Scholar
  9. Griffiths DV, Huang J, Fenton GA (2011) Probabilistic infinite slope analysis. Comput Geotech 38:577–584.  https://doi.org/10.1016/j.compgeo.2011.03.006 CrossRefGoogle Scholar
  10. Hao L, Yang LZ, Gao JM (2014) The application of information diffusion technique in probabilistic analysis to grassland biological disasters risk. Ecol Model 272:264–270.  https://doi.org/10.1016/j.ecolmodel.2013.10.014 CrossRefGoogle Scholar
  11. Huang C (1997) Principle of information diffusion. Fuzzy Sets Syst 91:69–90.  https://doi.org/10.1016/S0165-0114(96)00257-6 CrossRefGoogle Scholar
  12. Huang C, Huang Y (2018) An information diffusion technique to assess integrated hazard risks. Environ Res 161:104–113.  https://doi.org/10.1016/j.envres.2017.10.037 CrossRefGoogle Scholar
  13. Huang C, Ruan D (2008) Fuzzy risks and an updating algorithm with new observations. Risk Anal 28:681–694.  https://doi.org/10.1111/j.1539-6924.2008.01057.x CrossRefGoogle Scholar
  14. Huang J, Zeng C, Kelly R (2019) Back analysis of settlement of Teven road trial embankment using Bayesian updating. Georisk Assess Manag Risk Eng Syst Geohazards 1641609.  https://doi.org/10.1080/17499518.2019.1641609 Google Scholar
  15. Ji J, Zhang C, Gao Y, Kodikara J (2018) Effect of 2D spatial variability on slope reliability: a simplified FORM analysis. Geosci Front 9:1631–1638.  https://doi.org/10.1016/j.gsf.2017.08.004 CrossRefGoogle Scholar
  16. Jiang SH, Huang J (2018) Modeling of non-stationary random field of undrained shear strength of soil for slope reliability analysis. Soils Found 58:185–198.  https://doi.org/10.1016/j.sandf.2017.11.006 CrossRefGoogle Scholar
  17. Jiang S, Papaioannou I, Straub D (2018) Bayesian updating of slope reliability in spatially variable soils with in-situ measurements. Eng Geol 239:310–320.  https://doi.org/10.1016/j.enggeo.2018.03.021 CrossRefGoogle Scholar
  18. Jolicoeur P (1968) Interval estimation of the slope of the major Axis of a bivariate Normal distribution in the case of a small sample. Int Biometric Soc 24:679–682.  https://doi.org/10.2307/2528326 CrossRefGoogle Scholar
  19. Kang F, Xu Q, Li J (2016) Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence. Appl Math Model 40:6105–6120.  https://doi.org/10.1016/j.apm.2016.01.050 CrossRefGoogle Scholar
  20. Košťák B, Bielenstein HU (1971) Strength distribution in hard rock. Int J Rock Mech Min Sci 8:501–521.  https://doi.org/10.1016/1365-1609(71)90015-3 CrossRefGoogle Scholar
  21. Li DQ, Tang XS, Phoon KK (2015a) Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability. Reliab Eng Syst Saf 140:99–106.  https://doi.org/10.1016/j.ress.2015.03.034 CrossRefGoogle Scholar
  22. Li DQ, Zhang L, Tang XS et al (2015b) Bivariate distribution of shear strength parameters using copulas and its impact on geotechnical system reliability. Comput Geotech 68:184–195.  https://doi.org/10.1016/j.compgeo.2015.04.002 CrossRefGoogle Scholar
  23. Li DQ, Xiao T, Cao ZJ et al (2016) Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation. Landslides 13:293–303.  https://doi.org/10.1007/s10346-015-0569-2 CrossRefGoogle Scholar
  24. Li DQ, Yang ZY, Cao ZJ et al (2017) System reliability analysis of slope stability using generalized subset simulation. Appl Math Model 46:650–664.  https://doi.org/10.1016/j.apm.2017.01.047 CrossRefGoogle Scholar
  25. Li DQ, Yang ZY, Cao ZJ, Zhang LM (2019) Area failure probability method for slope system failure risk assessment. Comput Geotech 107:36–44.  https://doi.org/10.1016/j.compgeo.2018.11.017 CrossRefGoogle Scholar
  26. Motamedi M, Liang RY (2014) Probabilistic landslide hazard assessment using copula modeling technique. Landslides 11:565–573.  https://doi.org/10.1007/s10346-013-0399-z CrossRefGoogle Scholar
  27. Nataf A (1962) Détermination des distributions de probabilitédont les margessontdonnées. C R Hebd Seances Acad Sci 225:42–43Google Scholar
  28. Nelsen RB (2006) An introduction to copulas. Springer, New YorkGoogle Scholar
  29. Olkin I, Liu R (2003) A bivariate beta distribution. Stat Probab Lett 62:407–412.  https://doi.org/10.1016/S0167-7152(03)00048-8 CrossRefGoogle Scholar
  30. Pan Y, Zhang L, Wu X et al (2019) Modeling face reliability in tunneling: a copula approach. Comput Geotech 109:272–286.  https://doi.org/10.1016/j.compgeo.2019.01.027 CrossRefGoogle Scholar
  31. Phoon KK, Tang C (2019) Characterisation of geotechnical model uncertainty. Georisk Assess Manag Risk Eng Syst Geohazards 13:101–130.  https://doi.org/10.1080/17499518.2019.1585545 CrossRefGoogle Scholar
  32. Rahardjo H, Satyanaga A, Leong EC et al (2012) Variability of residual soil properties. Eng Geol 141–142:124–140.  https://doi.org/10.1016/j.enggeo.2012.05.009 CrossRefGoogle Scholar
  33. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6:461–464CrossRefGoogle Scholar
  34. Shen M, Chen Q, Zhang J et al (2016) Predicting liquefaction probability based on shear wave velocity: an update. Bull Eng Geol Environ 75:1199–1214.  https://doi.org/10.1007/s10064-016-0880-8 CrossRefGoogle Scholar
  35. Shen M, Khoshnevisan S, Tan X et al (2019) Assessing characteristic value selection methods for design with load and resistance factor design (LRFD) — design robustness perspective. Can Geotech J 56:1475–1485.  https://doi.org/10.1139/cgj-2018-0038 CrossRefGoogle Scholar
  36. Smirnov N (1948) Table for estimating the goodness of fit of empirical distributions. Ann Math Stat 19:279–281.  https://doi.org/10.1214/aos/1176348654 CrossRefGoogle Scholar
  37. Tang XS, Li DQ, Zhou CB, Phoon KK (2015) Copula-based approaches for evaluating slope reliability under incomplete probability information. Struct Saf 52:90–99.  https://doi.org/10.1016/j.strusafe.2014.09.007 CrossRefGoogle Scholar
  38. Tang XS, Li DQ, Cao ZJ, Phoon KK (2017) Impact of sample size on geotechnical probabilistic model identification. Comput Geotech 87:229–240.  https://doi.org/10.1016/j.compgeo.2017.02.019 CrossRefGoogle Scholar
  39. Wang XZ (1999) The theory, method and robustness of the parameter estimation based on the principle of information spread. J Wuhan Tech Univ Surv Mapp 24:240–244 (in Chinese)Google Scholar
  40. Wang F, Li H (2018) The role of copulas in random fields: characterization and application. Struct Saf 75:75–88.  https://doi.org/10.1016/j.strusafe.2018.05.006 CrossRefGoogle Scholar
  41. Wang P, Lu Z, Zhang K et al (2018) Copula-based decomposition approach for the derivative-based sensitivity of variance contributions with dependent variables. Reliab Eng Syst Saf 169:437–450.  https://doi.org/10.1016/j.ress.2017.09.012 CrossRefGoogle Scholar
  42. Wong LNY, Lai VSK, Tam TPY (2018) Joint spacing distribution of granites in Hong Kong. Eng Geol 245:120–129.  https://doi.org/10.1016/j.enggeo.2018.08.009 CrossRefGoogle Scholar
  43. Wu XZ (2015) Modelling dependence structures of soil shear strength data with bivariate copulas and applications to geotechnical reliability analysis. Soils Found 55:1243–1258.  https://doi.org/10.1016/j.sandf.2015.09.023 CrossRefGoogle Scholar
  44. Wu Y, Zhou X, Gao Y et al (2019) Effect of soil variability on bearing capacity accounting for non-stationary characteristics of undrained shear strength. Comput Geotech 110:199–210.  https://doi.org/10.1016/j.compgeo.2019.02.003 CrossRefGoogle Scholar
  45. Zhang L, Li DQ, Tang XS et al (2018) Bayesian model comparison and characterization of bivariate distribution for shear strength parameters of soil. Comput Geotech 95:110–118.  https://doi.org/10.1016/j.compgeo.2017.10.003 CrossRefGoogle Scholar
  46. Zhou X, Zhang G, Hu S, Li J (2019, 2019) Optimal estimation of shear strength parameters based on copula theory coupling information diffusion technique. Adv Civ Eng:8738969.  https://doi.org/10.1155/2019/8738969 Google Scholar
  47. Zhu H, Zhang LM, Xiao T, Li XY (2017) Generation of multivariate cross-correlated geotechnical random fields. Comput Geotech 86:95–107.  https://doi.org/10.1016/j.compgeo.2017.01.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Safety Science and Emergency ManagementWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Changjiang River Scientific Research Institute of Changjiang Water Resources CommissionWuhanPeople’s Republic of China
  3. 3.China United Engineering Corporation LimitedZhejiangPeople’s Republic of China

Personalised recommendations