Advertisement

Rock mass quality and preliminary analysis of the stability of ancient rock-cut Theban tombs at Sheikh ‘Abd el-Qurna, Egypt

  • Martin ZieglerEmail author
  • Rachael Colldeweih
  • Andrea Wolter
  • Andrea Loprieno-Gnirs
Original Paper
  • 5 Downloads

Abstract

The ancient Theban tombs at the hillside cemetery of Sheikh ‘Abd el-Qurna (SAQ), west of Luxor, Egypt, were excavated mainly in the Thebes Limestone Formation and show varying degrees of damage of rock pillars and ceilings. In order to understand the rock mass behaviour in selected tombs and its impact on past failures and current stability, we carried out geological mapping and rock mass quality assessments. Our work provides a geological map and geotechnical evaluation of the rock mass of these SAQ tombs and their surroundings. We mapped and described rock fractures in situ and with remote sensing data, and estimated the rock mass quality of the different members within the Thebes Limestone Formation using the Rock Mass Rating (RMR) and Geological Strength Index (GSI) systems. In addition, we conducted a rock pillar analysis. Analyses and mapping were supported by new high-resolution terrain models computed from ground-based and aerial photogrammetry and from terrestrial laser scanning. Our analyses show that the tombs at SAQ have been cut into poor to very good quality rock masses. Rock failures of ceilings and pillars were frequently facilitated by local, unfavourably oriented persistent discontinuities, such as tension cracks and faults. Other failures were related to the disintegration of nodular limestone into individual nodules upon weathering. Our data suggest that, in 18th Dynasty monumental tomb construction, low-strength rock masses rarely resulted in modifications of the planned tomb design in order to minimise the risk of rock falls and collapses.

Keywords

Geotechnical assessment Rock mass rating Rock pillar stability Remote sensing Tomb construction 

Notes

Acknowledgements

The authors are very grateful to the Permanent Committee of the Supreme Council of Antiquities in Cairo and to its Secretary General Dr. Moustafa Waziri, to Dr. Mohammad Ismail, former Director of the Department of Foreign Missions, and to the former and current directors of the Luxor and Qurna Inspectorates, Dr. Mohammad Abd el-Aziz and Mr. Fathy Yaseen, and their staff for approving and supporting our field research in Western Thebes from fall 2015 to spring 2018. Mr. Mahmoud Ibrahim kindly assisted the administrative planning of our field seasons, Raīs Abd el-Hamid Osman gave technical and logistic support in the field.

We are also thankful to Dr. K. Powroznik, who provided aerial images, using the camera-equipped helikite of the “Life Histories of Theban Tombs” (LHTT) project, as well as to Prof. Andreas Wieser, chair of the Institute of Geodesy and Photogrammetry (ETH Zurich) and his staff and students for the acquisition and processing of TLS point clouds (P. Theiler, E. Friedli, D. Steinmann, M. Martinoni, L. Kaiser, K. Henggeler, A. Baumann, C. Zhou) and for the generation of TLS-based 3D models (E. Friedli, Z. Gojcic). We are grateful for the discussions with Prof. Florian Amann (RWTH Aachen) during our first field campaign. Dr. Hossam Abdelhameed (Tanta University) kindly provided the XRD analysis of the rock samples. The comments from two anonymous reviewers helped improve our manuscript. Dr. Xavier Droux (Lincoln College, Oxford) proofread the manuscript. Finally, the Swiss National Science Foundation (SNF) is acknowledged for its generous investment in the overarching project, “Life Histories of Theban Tombs” under grant number 162967.

Supplementary material

10064_2019_1507_MOESM1_ESM.pdf (85 kb)
ESM 1 Record of dimensions, failure condition and rock mass rating parameters for all analysed pillars. The pillar condition classes are given according to Esterhuizen et al. (2005), and the joint roughness and weathering are given according to Barton and Bandis (1990). Bold font indicates values taken from photogrammetric models, while regular font indicates the range determined from the pillar window survey. For pillars with non-square footprints (*), the larger pillar widths are displayed. Values given in brackets indicate the estimated original pillar height and width to height (W/H) ratio. (PDF 85.4 kb)
10064_2019_1507_Fig14_ESM.png (997 kb)
ESM 2

ak Horizontal cross-sections by Kampp (1996) through pillared tomb halls analysed in this study for pillar quality. The given pillar numbers correspond to the pillar numbers in Appendix 1. Our focus was on completed pillars in closed halls, with one exception, the portico pillars of K76. (PNG 997 kb)

10064_2019_1507_MOESM2_ESM.tif (13.4 mb)
High resolution image (TIF 13766 kb)

References

  1. Abdallah T, Helal H (1990) Risk evaluation of rock mass sliding in El-Deir El-Bahary valley, Luxor, Egypt. Bull Int Assoc Eng Geol 42:3–9Google Scholar
  2. Aiban SA (2006) Compressibility and swelling characteristics of Al-Khobar palygorskite, eastern Saudi Arabia. Eng Geol 87:205–219Google Scholar
  3. Akram M, Bakar MZA (2007) Correlation between uniaxial compressive strength and point load index for salt-range rocks. Pak J Eng Appl Sci 1(1):1–8Google Scholar
  4. Arnold D (1971) Grabung im Asasif 1963–1970. 1. Das Grab des Jnj-jtj.f: Die Architektur. Philipp von Zabern, MainzGoogle Scholar
  5. Arnold D (1991) Amenemhat I and the early Twelfth Dynasty at Thebes. Metrop Mus J 26:5–48Google Scholar
  6. Aubry MP, Berggren WA, Dupuis C, Ghaly H, Ward D, King C, Knox RW, Ouda K, Youssef M, Galal WF (2009) Pharaonic necrostratigraphy: a review of geological and archaeological studies in the Theban Necropolis, Luxor, West Bank, Egypt. Terra Nova 21(4):237–256Google Scholar
  7. Aubry MP, Dupuis C, Ghaly H, King C, Knox RW, Berggren WA, Karlshausen C (2011) Geological setting of the Theban Necropolis: implications for the preservation of the West Bank monuments. In: Aston D, Bader B, Gallorini C, Nicholson P, Buckingham S (eds) Under the potter’s tree. Studies on ancient Egypt presented to Janine Bourriau on the occasion of her 70th birthday (Orientalia Lovaniensia Analecta 204). Peeters, Leuven, pp 81–124Google Scholar
  8. Aydan Ö, Tano H, Geniş M, Sakamoto I, Hamada M, Yoshimura S (2008) Environmental and rock mechanics investigations for the restoration of the tomb of Amenophis III. In: Proceedings of the Japan–Egypt Joint Symposium New Horizons in Geotechnical and Geoenvironmental Engineering, Geotechnical Engineering Research Laboratory, Tanta University, Tanta, Egypt, 15–17 September 2008, pp 151–162Google Scholar
  9. Bács TA (2015) Researches in the funerary complex of Hapuseneb, high priest of Amun at Thebes (TT 67). An interim report. In: Bács TA, Schreiber G (eds) Current research of the Hungarian archaeological mission in Thebes. Office of the Hungarian Cultural Counsellor, Cairo, pp 9–21Google Scholar
  10. Badawy A (1999) Historical seismicity of Egypt. Acta Geod Geoph Hung 34(1–2):119–135Google Scholar
  11. Badawy A, Abdel-Monem SM, Sakr K, Ali SM (2006) Seismicity and kinematic evolution of Middle Egypt. J Geod 42:28–37Google Scholar
  12. Barton NR, Bandis S (1990) Review of predictive capabilities of JRC-JCS model in engineering practice. In: Barton N, Stephansson O (eds) Proceedings of the International Symposium on Rock Joints, Loen, Norway, 4–6 June 1990. A.A. Balkema, Rotterdam, pp 603–610Google Scholar
  13. Barton N, Choubey V (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54Google Scholar
  14. Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New YorkGoogle Scholar
  15. Biscaye PE (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull 76:803–832Google Scholar
  16. Cai M, Kaiser PK, Uno H, Tasaka Y, Minami M (2004) Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 41:3–19Google Scholar
  17. Cobbold P, Watkinson J, Cosgrove J (2008) Faults of the pharaohs. Geoscientist 18(6). https://www.geolsoc.org.uk/Geoscientist/Archive/June-2008/Faults-of-the-Pharaohs. Accessed 14 Oct 2018
  18. Cross SW (2008) The hydrology of the Valley of the Kings. J Egypt Archaeol 94:303–310Google Scholar
  19. Cuezva S, García-Guinea J, Fernandez-Cortes A, Benavente D, Ivars J, Galan JM, Sanchez-Moral S (2016) Composition, uses, provenance and stability of rocks and ancient mortars in a Theban tomb in Luxor (Egypt). Mater Struct 49:941–960Google Scholar
  20. Curtis GH (1979) The geology of the Valley of the Kings, Thebes, Egypt. Theban Royal Tomb Project, The Brooklyn Museum Theban Expedition, vol 28. Unpublished report, Brooklyn MuseumGoogle Scholar
  21. Curtis G, Rutherford J (1981) Expansive shale damage, Theben royal tombs, Egypt. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 15–19 June 1981, pp 71–74Google Scholar
  22. Davies NG (1930) The tomb of Ḳen-Amūn at Thebes, vol 1 (Publications of the Metropolitan Museum of Art, Egyptian Expedition 5). The Metropolitan Museum of Art, New YorkGoogle Scholar
  23. Davies NG (1941) The tomb of the Vizier Ramose (Mond Excavations at Thebes 1). The Egypt Exploration Society, LondonGoogle Scholar
  24. Davies NG (1943) The tomb of Rekh-mi-Rē at Thebes (Publications of the Metropolitan Museum of Art, Egyptian Expedition 11). The Metropolitan Museum of Art, New YorkGoogle Scholar
  25. Deere DU, Deere DW (1988) The rock quality designation (RQD) index in practice. In: Kirkaldie L (ed) Rock classification systems for engineering purposes (ASTM Special Technical Publication 984). ASTM International, Philadelphia, pp 91–101Google Scholar
  26. Delanoue J (1868) Notes sur la constitution géologique des environs de Thèbes. In: von Zittel KA (ed) Beiträge zur Geologie und Palaeontologie der libyschen Wüste und der angrenzenden Gebiete von Ägypten (Palaeontologica 30). T. Fischer, Kassel, pp 101–103Google Scholar
  27. Dogan AU, Ozsan A, Dogan M, Karpuz C, Brenner RL (2006) Classifications of hardgrounds based upon their strength properties. Carbonates Evaporites 21(1):14–20Google Scholar
  28. Dorman PF (1993) The tombs of Senenmut. The architecture and decoration of tombs 71 and 353 (Publications of the Metropolitan Museum of Art, Egyptian Expedition 24). The Metropolitan Museum of Art, New YorkGoogle Scholar
  29. Dorn A (2016) The hydrology of the Valley of the Kings. Weather, rain falls, drainage patterns, and flood protection in antiquity. In: Wilkinson RH, Weeks KR (eds) The Oxford handbook of the Valley of the Kings. Oxford University Press, Oxford, pp 30–38Google Scholar
  30. Dorn A, Müller M (2006) Regenfälle in Theben-West. Zeitschrift für Ägyptische Sprache und Altertumskunde 133:90–93Google Scholar
  31. Dupuis C, Aubry MP, King C, Knox RW, Berggren WA, Youssef M, Galal WF, Roche M (2011) Genesis and geometry of tilted blocks in the Theban Hills, near Luxor (Upper Egypt). J Afr Earth Sci 61(3):245–267.  https://doi.org/10.1016/j.jafrearsci.2011.06.001 Google Scholar
  32. Dziobek E (1992) Das Grab des Ineni. Theben Nr. 81. Archäologische Veröffentlichungen Deutsches Archäologisches Institut Abteilung Kairo 98, MainzGoogle Scholar
  33. El-Didy MA (2000) Hydraulic response of the Valley of the Kings in Luxor. In: Weeks KR (ed) KV 5. A preliminary report on the excavation of the tomb of the sons of Ramesses II in the Valley of the Kings. Publications of the Theban Mapping Project 2. American University in Cairo Press, Cairo, pp 161–166. Appendix IIIGoogle Scholar
  34. El-Sayed A, Vaccari F, Panza GF (2004) The Nile Valley of Egypt: a major active graben that magnifies seismic waves. Pure Appl Geophys 161:983–1002Google Scholar
  35. Esterhuizen GS, Innancchione AT, Ellenberger JL, Dolinar DR (2005) Pillar stability issues based on a survey of pillar performance in underground limestone mines. In: Peng SS, Mark C, Finfinger GL, Tadolini S, Khair AW, Heasley KA, Luo Y (eds) Proceedings of the 25th International Conference on Ground Control in Mining, West Virginia University, Morgantown, WV, pp 354–361Google Scholar
  36. Folk RL (1959) Practical petrographic classification of limestones. Am Assoc Pet Geol Bull 43:1–38Google Scholar
  37. Garson MS, Krs M (1976) Geophysical and geological evidence of the relationship of Red Sea transverse tectonics to ancient fractures. Geol Soc Am Bull 87:169–181Google Scholar
  38. Gischig V, Preisig G, Eberhardt E (2016) Numerical investigation of seismically induced rock mass fatigue as a mechanism contributing to the progressive failure of deep-seated landslides. Rock Mech Rock Eng 49(6):2457–2478Google Scholar
  39. Gnirs AM, Grothe E, Guksch H (1997) Zweiter Vorbericht über die Aufnahme und Publikation von Gräbern der 18. Dynastie der thebanischen Beamtennekropole. Mitteilungen des Deutschen Archäologischen Instituts Abteilung Kairo 53, pp 57–83Google Scholar
  40. Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rocks. J Soil Mech Found Div 94(3):637–660Google Scholar
  41. Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122(4):1004–1036Google Scholar
  42. Grothe E (1998) Das Grab eines Amenophis in Theben. In: Guksch H, Polz D (eds) Stationen: Beiträge zur Kulturgeschichte Ägyptens. Rainer Stadelmann gewidmet. Philipp von Zabern, Mainz, pp 273–280Google Scholar
  43. Guksch H (1995) Die Gräber des Nacht-min und des Men-cheper-Ra-seneb. Theben Nr. 87 und 79 (Archäologische Veröffentlichungen Deutsches Archäologisches Institut Abteilung Kairo 34). Philipp von Zabern, MainzGoogle Scholar
  44. Gunzburger Y, Merrien-Soukatchoff V, Guglielmi Y (2005) Influence of daily surface temperature fluctuations on rock slope stability: case study of the Rochers de Valabres slope (France). Int J Rock Mech Min Sci 42(3):331–349Google Scholar
  45. Hammah RE, Curran JH (1998) Fuzzy cluster algorithm for the automatic identification of joint sets. Int J Rock Mech Min Sci 35(7):889–905Google Scholar
  46. Havenith HB, Strom A, Torgoev I, Torgoev A, Lamair L, Ischuk A, Abdrakhmatov K (2015) Tien Shan geohazards database: earthquakes and landslides. Geomorphology 249:16–31Google Scholar
  47. Hemeda S (2018) Engineering failure analysis and design of support system for ancient Egyptian monuments in Valley of the Kings, Luxor, Egypt. Geoenviron Disasters 5:12.  https://doi.org/10.1186/s40677-018-0100-x Google Scholar
  48. Hoek E (1994) Strength of rock and rock masses. ISRM News J 2(2):4–16Google Scholar
  49. Hoek E (2007) Practical rock engineering. Rocscience. https://www.rocscience.com/assets/resources/learning/hoek/Practical-Rock-Engineering-Full-Text.pdf. Accessed 14 Oct 2018
  50. International Society of Rock Mechanics (ISRM) (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368Google Scholar
  51. Isphording WC (1973) Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits. Clays Clay Miner 21(5):391–401Google Scholar
  52. JCPDS International Centre for Diffraction Data (1986) Mineral powder diffraction file: data bookGoogle Scholar
  53. Jenkins KA, Smith BJ (1990) Daytime rock surface temperature variability and its implications for mechanical rock weathering: Tenerife, Canary Islands. Catena 17(4–5):449–459Google Scholar
  54. Kampp F (1996) Die Thebanische Nekropole: Zum Wandel des Grabgedankens von der XVIII. bis zur XX. Dynastie, 2 vols. (Theben 13.1–2). Philipp von Zabern, MainzGoogle Scholar
  55. Kampp F (2003) The Theban necropolis. An overview of topography and tomb development from the Middle Kingdom to the Ramesside period. In: Strudwick N, Taylor J (eds) The Theban necropolis. Past, present, and future. British Museum Press, London, pp 2–10Google Scholar
  56. Karakhanyan A, Avagyan A, Sourouzian H (2010) Archaeoseismological studies at the temple of Amenhotep III, Luxor, Egypt. In: Sintubin M, Stewart IS, Niemi TM, Altunel E (eds) Ancient earthquakes (Geological Society of America Special Paper 471). Geological Society of America, Boulder, pp 199–222Google Scholar
  57. Karlshausen C, Dupuis C (2014) Architectes et tailleurs de pierre à l’épreuve du terrain. Réflexions géoarchéologiques sur la colline de Cheikh Abd el-Gourna. Bulletin de l’Institut Français d’Archéologie Orientale 114(1):261–289Google Scholar
  58. King C, Dupuis C, Aubry MP, Berggren WA, Knox RB, Galal WF, Baele JM (2017) Anatomy of a mountain: the Thebes Limestone Formation (Lower Eocene) at Gebel Gurnah, Luxor, Nile Valley, Upper Egypt. J Afr Earth Sci 136:1–48Google Scholar
  59. Krauland N, Soder PE (1987) Determining pillar strength from pillar failure observations. Eng Min J 188:34–40Google Scholar
  60. Laubscher DH (1990) A geomechanics classification system for the rating of rock mass in mine design. J South Afr Inst Min Metall 90(10):257–273Google Scholar
  61. Lazar J (1995) Geologisch-geotechnische Untersuchungen im Thebanischen Gebirge, Teil Nord, Luxor, Ägypten. Diploma thesis, University of Bern, Geological InstituteGoogle Scholar
  62. Lemy F, Hadjigeorgiou J (2003) Discontinuity trace map construction using photographs of rock exposures. Int J Rock Mech Min Sci 40:903–917Google Scholar
  63. Loprieno-Gnirs A (2018) Creuser une tombe dans la colline thébaine. Le projet archéologique Life Histories of Theban Tombs de l’université de Bâle. Bulletin de la Société Française d’Égyptologie 199:100–126Google Scholar
  64. Maamoun M, Megahed A, Allam A (1984) Seismicity of Egypt. Bull HIAG 4:109–160Google Scholar
  65. MacDonald J, Burton C (2003) Collins dictionary geology. HarperCollins Publishers, GlasgowGoogle Scholar
  66. Mackenzie RC (1959) The classification and nomenclature of clay minerals. Clay Miner Bull 4:52–66Google Scholar
  67. Marinos V, Marinos P, Hoek E (2005) The geological strength index: applications and limitations. Bull Eng Geol Environ 64(1):55–65.  https://doi.org/10.1007/s10064-004-0270-5 Google Scholar
  68. Martin CD, Maybee WG (2000) The strength of hard-rock pillars. Int J Rock Mech Min Sci 37:1239–1246Google Scholar
  69. Matsuoka N, Hirakawa K, Watanabe T, Haeberli W, Keller F (1998) The role of diurnal, annual and millennial freeze-thaw cycles in controlling alpine slope instability. In: Proceedings of the Seventh International Conference on Permafrost, Centre d’etudes nordiques, Universite Laval, pp 711–717Google Scholar
  70. McLane J, Wüst RAJ, Porter B, Rutherford J (2003) Flash-flood impacts and protection measures in the Valley of the Kings, Luxor, Egypt. APT Bull 34(1):37–45Google Scholar
  71. Millot G (1979) Les phénomènes de l’épigénie calcaire et leur rôle dans l’atération. Sci Sol 1:259–261Google Scholar
  72. Palmstrom A (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Space Technol 20:362–377Google Scholar
  73. Peng S, Zhang J (2007) Engineering geology for underground rocks. Springer, Berlin.  https://doi.org/10.1007/978-3-540-73295-2 Google Scholar
  74. Pinch Brock L (1996) The Theban flood of 1994. Ancient antecedents and the case of KV 55. Varia Aegyptiaca 11:1–16Google Scholar
  75. Pollard DD, Aydin A (1988) Progress in understanding jointing over the past century. Geol Soc Am Bull 100(8):1181–1204Google Scholar
  76. Polz D (2007) Der Beginn des Neuen Reiches. Zur Vorgeschichte einer Zeitenwende (Sonderschrift Deutsches Archäologisches Institut, Abteilung Kairo 31). Walter de Gruyter, BerlinGoogle Scholar
  77. Porter B, Moss RLB, Burney EW (1994) Topographical bibliography of ancient Egyptian hieroglyphic texts, reliefs and paintings 1.1: private tombs. Griffith Institute, OxfordGoogle Scholar
  78. Priest SD, Hudson JA (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int J Rock Mech Min Sci Geomech Abstr 18(3):183–197Google Scholar
  79. Reeves GM, Sims I, Cripps JC (2006) Clay materials used in construction (Geological Society Engineering Geology special publication 21). Geological Society, LondonGoogle Scholar
  80. Rodriguez-Navarro C, Sebastian E, Doehne E, Ginell WS (1998) The role of sepiolite-palygorskite in the decay of ancient Egyptian limestone sculptures. Clays Clay Miner 46(4):414–422Google Scholar
  81. Rutherford JB (1990) Geotechnical causes of ancient tomb damage, valley of the kings, Egypt. In: Balasubramaniam AS et al (eds) Proceedings of the symposium on geotechnical aspects of restoration works on infrastructures and monuments, Bangkok, December 1988. A.A. Balkema, Rotterdam, pp 3–15Google Scholar
  82. Said R (1990) The geology of Egypt. A.A. Balkema, RotterdamGoogle Scholar
  83. Sawires R, Peláez JA, Fat-Helbary RE, Ibrahim HA, García Hernández MT (2015) An updated seismic source model for Egypt. In: Earthquake Engineering, IntechOpen.  https://doi.org/10.5772/58971
  84. Shaaban MN (2004) Diagenesis of the lower Eocene Thebes Formation, Gebel Rewagen area, Eastern Desert, Egypt. Sediment Geol 165:53–65Google Scholar
  85. Sieberg A (1932) Untersuchungen über Erdbeben und Bruchschollenbau im östlichen Mittelmeergebiet: Ergebnisse einer erdbebenkundlichen Orientreise unternommen im Frühjahr 1928 mit Mitteln der Notgemeinschaft der Deutschen Wissenschaft. Denkschriften der Medizinisch-Naturwissenschaftlichen Gesellschaft zu Jena 18(2):161–273Google Scholar
  86. Singh B, Goel RK (2011) Rock mass rating. In: Singh B, Goel RK (eds) Engineering rock mass classification. Tunneling, foundations, and landslides. Butterworth-Heinemann, Waltham, pp 45–62Google Scholar
  87. Snavely PD, Garrison RE, Meguid AA (1979) Stratigraphy and regional depositional history of the Thebes Formation (Lower Eocene), Egypt. Ann Geol Surv Egypt (Cairo) 9:344–362Google Scholar
  88. Strudwick N (1995) Flood damage in Thebes. Biblic Archaeol 58:116–117Google Scholar
  89. Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182Google Scholar
  90. Tawfik HA, Zahran EK, Abdel-Hameed AT, Maejima W (2011) Mineralogy, petrography, and biostratigraphy of the Lower Eocene succession at Gebel El-Qurn, West Luxor, Southern Egypt. Arab J Geosci 4(3–4):517–534.  https://doi.org/10.1007/s12517-010-0158-6 Google Scholar
  91. Teodorovich GI (1961) Authigenic minerals in sedimentary rocks. Consultants Bureau, New YorkGoogle Scholar
  92. Varnes DJ (1958) Landslide types and processes. Landslides Eng Pract 29(3):20–47Google Scholar
  93. Waragai T (1998) Effects of rock surface temperature on exfoliation, rock varnish, and lichens on a boulder in the Hunza Valley, Karakoram Mountains, Pakistan. Arct Alp Res 30(2):184–192Google Scholar
  94. Weeks KR, Hetherington NJ (2006) The Valley of the Kings, Luxor, Egypt. Site management master plan. Theban Mapping Project, CairoGoogle Scholar
  95. Wiener MH, Allen JP (1998) Separate lives: the Ahmose Tempest Stela and the Theran eruption. J Near East Stud 57(1):1–28Google Scholar
  96. Williams MAJ, Duller GAT, Williams FM, Woodward JC, Macklin MG, El Tom OAM, Munro RN, El Hajaz Y, Barrows TT (2015) Causal links between Nile floods and eastern Mediterranean sapropel formation during the past 125 kyr confirmed by OSL and radiocarbon dating of Blue and White Nile sediments. Quat Sci Rev 130:89–108Google Scholar
  97. Wood HO, Neumann F (1931) Modified Mercalli intensity scale of 1931. Bull Seismol Soc Am 21(4):277–283Google Scholar
  98. World Meteorological Organization (WMO) (2018) World Weather Information Service (WWIS) website by WMO. http://worldweather.wmo.int. Data retrieved 14 Oct 2018
  99. Wüst RAJ (1995) Geologisch-geotechnische Untersuchungen im thebanischen Gebirge, Teil Süd, Luxor, Ägypten. Diploma thesis, University Bern, Geological InstituteGoogle Scholar
  100. Wüst RAJ, McLane J (2000) Rock deterioration in the Royal Tomb of Seti I, Valley of the Kings, Luxor, Egypt. Eng Geol 58(2):163–190.  https://doi.org/10.1016/S0013-7952(00)00057-0 Google Scholar
  101. Wüst RAJ, Schlüchter C (2000) The origin of soluble salts in rocks of the Thebes Mountains, Egypt: the damage potential to ancient Egyptian wall art. J Archaeol Sci 27(12):1161–1172.  https://doi.org/10.1006/jasc.1999.0550 Google Scholar
  102. Youssef MI (1968) Structural pattern of Egypt and its interpretation. AAPG Bull 52(4):601–614Google Scholar
  103. Ziegler M, Loew S, Moore JR (2013) Distribution and inferred age of exfoliation joints in the Aar Granite of the central Swiss Alps and relationship to Quaternary landscape evolution. Geomorphology 201:344–362Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesETH ZurichZurichSwitzerland
  2. 2.Department of Ancient CivilizationsUniversity of BaselBaselSwitzerland

Personalised recommendations