Advertisement

Variability of geotechnical parameters of lateritic gravels overlying contrasted metamorphic rocks in a tropical humid area (Cameroon): implications for road construction

  • Arnaud Ngo’o Ze
  • Vincent Laurent OnanaEmail author
  • Aloys Thierry Ndzié Mvindi
  • Hervé Nyassa Ohandja
  • Robert Medjo Eko
  • Georges Emmanuel Ekodeck
Original Paper
  • 21 Downloads

Abstract

The variability of the geotechnical properties of lateritic gravels developed on metamorphic rocks from the same clay protolith and of a nearby degree of metamorphism was studied for road construction purposes. Chlorite schist-derived lateritic gravels are more quartzose, more plastic (Plasticity Index PI = 27%) and have a weak Californian bearing ratio (CBR = 50%) compared to those developed on mica schists (PI = 18%, CBR = 62%). The principal components analysis results confirmed by those of agglomerative hierarchical clustering reveal the existence of two groups of materials, the lateritic gravels on chlorite schists (skeleton = 48.27%, mortar = 36.31%, fines = 27.63%, PI = 29%, grading modulus (Gm) = 1.88, maximum dry density (MDD) = 2.00 g/cm3, CBR = 44%) and the mica schist-derived lateritic gravels (skeleton = 34.82%, mortar = 25.45%, fines = 17.90%, PI = 18%, Gm = 2.22, MDD = 2.13 g/cm3, CBR = 65%). Chlorite schist-derived lateritic gravels are mainly characterized by granulometric and plasticity parameters, while those developed on mica schists are characterized by physical and compaction parameters. The mica schist-derived lateritic gravels are usable as sub-base layers for any type of traffic and as base course for low volume traffic. On the other hand, those developed on chlorite schists can be used as a sub-base for any type of traffic and require some treatment prior to a possible use as base layers. The higher the degree of metamorphism of the parental rock, the better the geotechnical properties of the lateritic gravels generated.

Keywords

South Cameroon Schistose rocks Laterites Geotechnical properties Statistical analyses Sub-base and base courses 

Notes

Acknowledgments

The authors express their gratitude to all the anonymous reviewers who have greatly improved the quality of this manuscript.

References

  1. Adeyemi GO (1995) The influence of parent rock factor on some engineering index properties of three residual lateritic soils in south western Nigeria. Bull Int Assoc Eng Geol 52:3–8CrossRefGoogle Scholar
  2. AFNOR (1991) NF P94–054: Sols: reconnaissance et essais–Détermination de la masse volumique des particules solides des sols–Méthode du pycnomètre à eau. Association Française de Normalisation, ParisGoogle Scholar
  3. AFNOR (1992) NF P94–057: Sols: reconnaissance et essais. Analyse granulométrique. In: Méthode par sédimentation. Association Française de Normalisation, ParisGoogle Scholar
  4. AFNOR (1993) NF P 94–051: Sols: reconnaissance et essais. Détermination des limites d’Atterberg. In: Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Association Française de Normalisation, ParisGoogle Scholar
  5. AFNOR (1996) NF P 94–056: Sols: reconnaissance et essais. Analyse granulométrique. In: Méthode par tamisage à sec après lavage. Association Française de Normalisation, ParisGoogle Scholar
  6. AFNOR (1997) NF P94–078: Sols: reconnaissance et essais–Indice CBR après immersion. Indice CBR immédiat. In: Indice Portant Immédiat - Mesure sur échantillon compacté dans le moule CBR. Association Française de Normalisation, ParisGoogle Scholar
  7. AFNOR (1999) NF P94–093: Sols: Reconnaissance et essais Détermination des références de compactage d'un matériau. Essai Proctor normal - Essai Proctor modifié. Association Française de Normalisation, ParisGoogle Scholar
  8. Bagarre E (1990) Utilisation des graveleux latéritiques en technique routière. ISTED, ParisGoogle Scholar
  9. Bello AA, Osinubi KJ (2010) Attenuative capacity of compacted three reddish brown tropical soils. Cont J Eng Sci 5(2):39–54Google Scholar
  10. Bray JB, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  11. CEBTP (1984) Guide pratique de dimensionnement des chaussées pour les pays tropicaux. Centre d’expertise du bâtiment et des travaux publics, Saint-Rémy-lès-Chevreuse, p 155Google Scholar
  12. Charman JH (1988) Laterite in road pavements. London Construction Industry Research and Information Association Special Publication 47. CIRIA, LondonGoogle Scholar
  13. Chuka OC, Moruf SB, Ewoma OS, Olatunbosun AM (2011) The Kano–Kazaure highway, north Central Nigeria: the significance of the engineering geology in construction. Bul Eng Geol Environ 70(1):33–40CrossRefGoogle Scholar
  14. Munsell color (2000) Charts. Revised washable edn. Macbeth Division of Kollmorge Corporation, BaltimoreGoogle Scholar
  15. Davis JC (1986) Statistics and data analysis in geology. Wiley, New YorkGoogle Scholar
  16. De Graft-Johnson JWS, Bhatia HS, Hammond AA (1972) Lateritic gravel evaluation for road construction. Journal soil mechanics and foundations division, ASCE, 98, (SM 11), proc. Paper 9375:1245–1265Google Scholar
  17. Dercourt J, Paquet J (1999) Géologie, objets et méthodes. Cours et exercices résolus. Dunod 10ème Ed., ParisGoogle Scholar
  18. Direction des Etudes Générales et de la Normalisation (DEGN) (1987) Recommandation pour l’utilisation en corps de chaussées de graveleux latéritiques naturels. Recommandation 30.004-R. Ministère de l’équipement, République du CamerounGoogle Scholar
  19. Djedid A, Bekkouche A, Aissa Mamoune AM (2001) Identification et prévision du gonflement de quelques sols de la région de Tlemcen (Algérie). Bull Liaison Lab Ponts Chaussées 233:67–75Google Scholar
  20. Duchaufour P (2001) Introduction à la science du sol: Sol, végétation, environnement, Dunod 6ème Ed., ParisGoogle Scholar
  21. Ekodeck GE (1984) L’altération des roches métamorphiques du Sud Cameroun et ses aspects géotechniques. PhD thesis. Université de Grenoble I, Grenoble, p 392Google Scholar
  22. Fall M, Tisot JP, Cissé IK (1994) Specification for road design using statistical data. An example of laterite or gravel lateritic soils from Senegal. Bull Int Assoc Eng Geol 50:17–35CrossRefGoogle Scholar
  23. Fall M, Tisot JP, Cissé IK (1995) Stress-strain behaviour of three compacted lateritic gravel from western Senegal using the shear box machine. Bull Int Assoc Eng Geol 52:59–73CrossRefGoogle Scholar
  24. Fall M, Sawangsuriya A, Benson CH, Edil TB, Bosscher PJ (2008) On the investigations of resilient modulus of residual tropical gravel lateritic soils from Senegal (West Africa). Geotech Geol Eng 26(1):109–111CrossRefGoogle Scholar
  25. Frempong EM (1995) Field compaction control studies on road bases in new settlement area in Ghana. Geotech Geol Eng 13:227–241CrossRefGoogle Scholar
  26. Gidigasu MD (1991) Characterization and use of tropical gravels for pavement construction in West Africa. Geotech Geol Eng 9:219–260CrossRefGoogle Scholar
  27. Indraratna B, Nutalaya P (1991) Some engineering characteristics of a compacted lateritic residual soil. Geotech Geol Eng 9:125–137CrossRefGoogle Scholar
  28. Kamgang KBV, Ekodeck GE, Njilah IK (2001) Evolution géochimique des formations latéritiques dans l’écosystème périforestier du Sud-Est Cameroun: le site de Kandara. Afr J Sci Tech–Sci Eng Ser 2(1):19–32Google Scholar
  29. Kamtchueng TB, Onana VL, Fantong WY, Ueda A, Ntouala RFD, Wongolo MHD, Ndongo GB, Ngo’o Ze A, Kamgang VKB, Ondoa JM (2015) Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon): implications for road construction. Geo-Engineering 6(1).  https://doi.org/10.1186/s40703-014-0001-0
  30. Kassogue M, Herbert G, Massiéra M (2002) Contrôle de la qualité sur les matériaux dans les couches de chaussée (Revêtement exclu). Proceeding of the 4th transportation speciality conference. Canadian Society for Civil Engineering, 30th annual conference, Montreal, Quebec, 5–8 Jun 2002, pp 413–422Google Scholar
  31. Mahalinga-Iyer U, Williams DJ (1997) Properties and performance of lateritic soil in road pavements. Eng Geol 46:71–80CrossRefGoogle Scholar
  32. Millogo Y, Karfa T, Raguilnaba O, Kalsibiri K, Blanchart P, Thomassin JH (2008) Geotechnical, mechanical, chemical and mineralogical characterization of lateritic gravels of Sapouy (Burkina Faso) used in road construction. Constr Build Mater 22:70–76CrossRefGoogle Scholar
  33. Ndam NJR, Braun JJ, Meybeck M, Bedimo BJP (1998) Réactualisation des données hydroclimatiques des bassins fluviaux de la Sanaga et du Nyong (Sud Cameroun). Géocam 2, Presses Universitaires, Yaoundé 51–64Google Scholar
  34. Ndzié Mvindi AT, Onana VL, Ngo’o Ze A, Nyassa Ohandja H, Ekodeck GE (2017) Influence of hydromorphic conditions in the variability of geotechnical parameters of gneiss-derived lateritic gravels in a savannah tropical humid area (Centre Cameroon), for road construction purposes. Transp Geotech 12:70–84CrossRefGoogle Scholar
  35. Nwaiwu CMO, Alkali IBK, Ahmed UA (2006) Properties of ironstone lateritic gravels in relation to gravel road pavement construction. Geotech Geol Eng 24:283–298CrossRefGoogle Scholar
  36. Nzabakurikiza A, Onana VL, Ngo’o Ze A, Ndzié Mvindi AT, Ekodeck GE (2017) Geological, geotechnical, and mechanical characterization of lateritic gravels from eastern Cameroon for road construction purposes. Bull Eng Geol Environ 76:1549–1562CrossRefGoogle Scholar
  37. Ogunsanwo O (1988) Basic geotechnical properties, chemistry and mineralogy of some laterite soils from S.W. Nigeria. Bull Int Assoc Eng Geol 37:131–135CrossRefGoogle Scholar
  38. Olinga JB (2003) Cadre géodynamique et évolution tectonométamorphique des ensembles cristallophylliens d’Awae et Ayos (Sud Cameroun). PhD thesis. Université de Yaoundé I, Yaoundé, p 159Google Scholar
  39. Onana VL, Nzabakurikiza A, Ndome Effoudou E, Likiby B, Kamgang Kabeyene V, Ekodeck GE (2015) Geotechnical, mechanical and geological characterization of lateritic gravels of Boumpial (Cameroon) used in road construction. J Camer. Acad Sci 1:45–54Google Scholar
  40. Onana VL, Ngo’o Ze A, Medjo Eko R, Ntouala RFD, Nanga Bineli MT, Ngono Owoudou B, Ekodeck GE (2017) Geological identification, geotechnical and mechanical characterization of charnockite-derived lateritic gravels from southern Cameroon for road construction purposes. Transp Geotech 10:35–46CrossRefGoogle Scholar
  41. Oyelami CA, Van Rooy JL (2016a) A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: a geological perspective. J Afr Earth Sci 119:226–237CrossRefGoogle Scholar
  42. Oyelami CA, Van Rooy JL (2016b) Geotechnical characterisation of lateritic soils from South-Western Nigeria as materials for cost-effective and energy-efficient building bricks. Environ Earth Sci 75:1475CrossRefGoogle Scholar
  43. Paige-Green P, Pinard M, Netterberg F (2015) A review of specifications for lateritic materials for low volume roads. Transp Geotech 5:86–98CrossRefGoogle Scholar
  44. Santoir C, Villiers JF (1995) Atlas régional du Sud Cameroun. Vol. Végétation, ORSTOM édGoogle Scholar
  45. Sikali F, Djalal ME (1987) Utilisation des latérites en technique routière au Cameroun. In: Séminaire Régional sur les Latérites: Sols, Matériaux, Minerais, Douala, Cameroun, 21–27 Jan, vol 1986, pp 277–288Google Scholar
  46. Tockol I (1993) Contribution à l’étude des graveleux latéritiques dans les pays du Sahel: cas des routes non revêtues. M.Sc. Thesis. Ecole de Génie, Université de Moncton, MonctonGoogle Scholar
  47. Ward JH (1963) Hierarchical grouping to optimize and objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  48. Wilding LP, Dress LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck N, Hall GF (eds) Pedogenesis and soil taxonomy. Wageningen, the Netherlands, pp 83–116Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Arnaud Ngo’o Ze
    • 1
  • Vincent Laurent Onana
    • 1
    Email author
  • Aloys Thierry Ndzié Mvindi
    • 1
    • 2
  • Hervé Nyassa Ohandja
    • 1
  • Robert Medjo Eko
    • 1
  • Georges Emmanuel Ekodeck
    • 1
  1. 1.Engineering Geology and Alterology Laboratory, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
  2. 2.National Civil Engineering Laboratory of Cameroon (LABOGENIE)DoualaCameroon

Personalised recommendations