Bulletin of Engineering Geology and the Environment

, Volume 78, Issue 7, pp 5495–5509 | Cite as

Alkali-silica reactivity of basaltic aggregates of Mesopotamia Argentina: case studies

  • Lenís MadsenEmail author
  • Claudio Rocco
  • Darío Falcone
  • Francisco Locati
  • Silvina Marfil
Original Paper


This work consists of two stages; first, studies were conducted to evaluate the potential reactivity of crushed material (6–20 mm fraction) from two quarries (named A and B) producing basaltic aggregates in the northeast of Argentina (Mesopotamia region, province of Corrientes). The studies included petrographic analysis, identification of expandable clay by X-ray diffraction, and standardized physical tests on mortar bars and concrete prisms to evaluate their potential reactivity. Also, dissolved silica was determined according to the chemical test method. Although the studied aggregates cannot be qualified in the same way based on the results of the physical tests, there is a direct relationship between the glass and expandable clay content in the samples (quarry A aggregate > quarry B aggregate) and their behavior in the physical and chemical tests (higher values for aggregates A). In the second stage, two structures of the province of Corrientes were studied: an urban pavement (made with aggregate A) and an airport runway (made with aggregate B), both with signs of alkali-silica reaction (ASR). A visual survey was carried out and concrete cores were extracted. On the latter, physical tests, petrographic studies, and SEM-EDS determinations were performed to identify reaction products. In the urban pavement, aggregate A, used as coarse aggregate, and the presence of siliceous sandstones rich in chalcedony and microcrystalline quartz in the fine aggregate would have contributed to ASR development, while in the airport runway, the initial deterioration would have favored the ASR as a secondary process.


Basalt Chalcedony Smectite Alkali-silica reaction 



Financial support was provided by Dirección de Vialidad Nacional, Project “Control de la reacción álcali agregado en hormigones elaborados con agregados basálticos de la Mesopotamia Argentina destinado a obras viales de hormigón”. The authors thank CICTERRA (CONICET-UNC), CIC (province of Buenos Aires), Facultad de Ingeniería - UNLP and the Geology Department of Universidad Nacional del Sur for their support. The authors thank the anonymous reviewers for their valuable comments which helped to improve the manuscript.


  1. American Concrete Institute (ACI) (1992) Guide to durable concrete. ACI Manual of Concrete Practice 201.2R-92, Committee 201, ACI, Farmington Hills, MIGoogle Scholar
  2. ASTM C 289 (2007) Standard test method for potential alkali–silica reactivity of aggregates (Chemical Method) (Withdrawn 2016). ASTM International, West Conshohocken, PA, p 7Google Scholar
  3. ASTM C1260 (2014) Standard test method for potential alkali reactivity of aggregates (mortar-bar method). ASTM International, West Conshohocken, p 5Google Scholar
  4. ASTM C1293 (2018) Standard test method for determination of length change of concrete due to alkali-silica reaction. ASTM International, West Conshohocken, p 7Google Scholar
  5. ASTM C295 (2008) Standard guide for petrographic examination of aggregates for concrete. ASTM International, West Conshohocken, p 9Google Scholar
  6. ASTM C642 (2013) Standard test method for density, absorption, and voids in hardened concrete. ASTM International, West Conshohocken, p 3Google Scholar
  7. Batic O, Maiza P, Sota J (1994) Alkali silica reaction in basaltic rocks NBRI method. Cem Concr Res 24(7):1317–1326CrossRefGoogle Scholar
  8. Broekmans MATM, Jansen JBH (1998) Silica dissolution in impure sandstone: application to concrete. J Geochem Explor 62(1-3):311–318CrossRefGoogle Scholar
  9. Couto TA (2008) Alkali-aggregate reaction: a study of the phenomenon in siliceous rocks. Masters of Science Thesis, Universidade Federal de Goiás, BrazilGoogle Scholar
  10. Favetto A, Pomposiello C (2010) Modelo geoeléctrico de la cuenca chacoparanense en Santa Fe-Entre Ríos a partir de un estudio magnetotelúrico. Rev Asoc Geol Argent 67(1):130–138Google Scholar
  11. Favetto A, Pomposiello C, Benedit T, Booker J (2004) Magnetotelluric model of the Chacoparenense sedimentary basin at 31.5S, Argentina. In: 17th International Workshop on Electromagnetic Induction in the Earth, India, S-1 P-58, p 77–78Google Scholar
  12. Fili M, Da Rosa Filho E, Auge M, Montaño Xavier J, Tujchneider O (1998) El acuífero Guaraní. Un recurso compartido por Argentina, Brasil, Paraguay y Uruguay (América del Sur). Instituto Tecnológico Geominero de España. Bol Geol Min 109(4):389–394Google Scholar
  13. Goguel R (1995) Alkali release by volcanic aggregate in concrete. Cem Concr Res 25(4):841–852CrossRefGoogle Scholar
  14. Gomes MEB (1996) Mecanismos de resfriamento, estruturação e processos pós-magmáticos em basaltos da Bacia do Paraná - Região de Frederico Westphalen (RS) – Brasil. PhD Thesis, Universidade Federal do Rio Grande do Sul, BrazilGoogle Scholar
  15. Guömundsson G, Ásgeirsson H (1975) Some investigations on alkali aggregate reaction. Cem Concr Res 5(3):211–219CrossRefGoogle Scholar
  16. Ichikawa T, Miura M (2007) Modified model of alkali-silica reaction. Cem Concr Res 37(9):1291–1297CrossRefGoogle Scholar
  17. IRAM 1531 (2016) Agregado grueso para hormigón de cemento. Instituto Argentino de Racionalización de Materiales (IRAM), 33 pGoogle Scholar
  18. IRAM 1551 (2000) Hormigón de cemento pórtland. Extracción, preparación y ensayo de testigos de hormigón endurecido. Instituto Argentino de Racionalización de Materiales (IRAM), 12 pGoogle Scholar
  19. IRAM 1649 (2008) Examen petrográfico de agregados para hormigón. Instituto Argentino de Racionalización de Materiales (IRAM), 13 pGoogle Scholar
  20. IRAM 1650 (1968) Reactividad alcalina potencial en agregados. Método de ensayo químico. Instituto Argentino de Racionalización de Materiales (IRAM), 15 pGoogle Scholar
  21. IRAM 1674 (1997) Agregados. Determinación de la reactividad alcalina potencial. Método acelerado de la barra del mortero. Instituto Argentino de Racionalización de Materiales (IRAM), 15 pGoogle Scholar
  22. IRAM 1700 (2013) Agregados. Determinación del cambio de longitud debido a la reacción álcali-agregado, en prismas de hormigón. Instituto Argentino de Racionalización de Materiales (IRAM), 16 pGoogle Scholar
  23. Katayama T, St John DA, Futagawa T (1989) The petrographic comparison of some volcanic rocks from Japan and New Zealand - potential reactivity related to interstitial glass and silica minerals. In: Okada K, Nishibayashi S, Kawamura M (eds) Proceedings of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, Japan, p 537–542Google Scholar
  24. Katayama T, Helgason TS, Olafsson H (1996) Petrography and alkali-reactivity of some volcanic aggregates from Iceland. In: Shayan A (ed). Proceedings of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Australia, p 377–384Google Scholar
  25. Korkanç M, Tuğrul A (2005) Evaluation of selected basalts form the point of alkali-silica reactivity. Cem Concr Res 35(3):505–512CrossRefGoogle Scholar
  26. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27(3):745–750CrossRefGoogle Scholar
  27. Leemann A, Holzer L (2005) Alkali-aggregate reaction–identifying reactive silicates in complex aggregates by ESEM observation of dissolution features. Cem Concr Res 27(7-8):796–801CrossRefGoogle Scholar
  28. Lindgård J, Nixon PJ, Borchers I, Schouenborg B, Wigum BJ, Haugen M, Åkesson U (2010) The EU partner project – European standard tests to prevent alkali reactions in aggregates. Cem Concr Res 40(4):611–635CrossRefGoogle Scholar
  29. Marfil SA, Maiza PJ (2001) Deteriorated pavements due to the alkali-silica reaction: a petrographic study of three cases in Argentina. Cem Concr Res 31(7):1017–1021CrossRefGoogle Scholar
  30. Marfil SA, Maiza PJ, Bengochea AL, Sota JD, Batic OR (1998) Relationships between SiO2, Al2O3, Fe2O3, CaO, K2O, and expansion in determination of the alkali reactivity of basaltic rocks. Cem Concr Res 28(2):189–196CrossRefGoogle Scholar
  31. Marfil S, Batic O, Maiza P, Grecco L, Falcone D (2010) Comportamiento de rocas basálticas de las Prov. de Corrientes y Entre Ríos frente a la reacción álcali-sílice. In: VI Congreso Uruguayo de Geología, Parque UTE Lavalleja, Uruguay, 6 pGoogle Scholar
  32. Montaño J, Tujchneider O, Auge M, Fili M, Paris M, D’Elía M, Pérez M, Nagy MI, Collazo P, Decoud P (1998) Acuíferos regionales en América Latina. Sistema Acuífero Guaraní. Capítulo argentino-uruguayo. Centro de Publicaciones, Universidad Nacional del Litoral, Santa Fe, 217 pGoogle Scholar
  33. Munhoz FAC, Kihara Y, Cincotto MA (2008) Effect of mineral admixtures on to the mitigation of alkali-silica reaction in concrete. In: Broekmans MA, Wigum BJ (eds) Proceedings of the 13th International Conference Alkali-Aggregate Reaction, Trondheim, Norway, p 591–599Google Scholar
  34. Nixon PJ, Sims I (2016) RILEM Recommended Test Method: AAR-4.1 – Detection of Potential Alkali-Reactivity – 60 °C Test Method for Aggregate Combinations Using Concrete Prisms. In: RILEM Recommendations for the Prevention of Damage by Alkali-Aggregate Reactions in New Concrete Structures. Dordrecht, Springer, p 99–116Google Scholar
  35. Pezzi EE, Mozetic ME (1989) Cuencas sedimentarias de la región chacoparanense. Cuencas Sedimentarias Argentinas, Serie Correlación Geológica 6:65–78Google Scholar
  36. Rocco C, Maiza P, Fava C, Marfil S, Tobes J (2012) Estudio de reactividad alcalina potencial de basaltos procedentes de yacimientos ubicados en la Mesopotamia Argentina. In: V Congreso Internacional de la AATH y 19° Reunión Técnica. Actas. Bahía Blanca, p 159–166Google Scholar
  37. Román HJM, Camacho RER, Afi, RU, Martínez G, Rodriguez DR (2008) Evaluation of alkali-aggregate reaction in aggregates from igneous rocks. In: Broekmans MA, Wigum BJ (eds) Proceedings of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, p 310–319Google Scholar
  38. Sanchez LM (1988) Contribution to the study of test methods in assessing alkali aggregate reactions in concrete. Master of Science Thesis, Universidade de São Paulo, BrazilGoogle Scholar
  39. Shayan A, Quick GW (1988) An alkali-reactive basalt from Queensland, Australia. Int J Cem Compos Lightweight Concrete 10(4):209–214CrossRefGoogle Scholar
  40. Silva Busso A (1999) Contribución al conocimiento de la geología e hidrogeología del sistema acuífero termal de la cuenca Chacoparanense oriental argentina. PhD thesis, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, 480 pGoogle Scholar
  41. St John DA, Poole AB, Sims I (1998) Concrete petrography: a handbook of investigative techniques, 1st edn. Edward Arnold, LondonGoogle Scholar
  42. Tiecher F (2006) Alkali-aggregate reaction: evaluation on the behavior of the aggregates from southern region of Brazil when different types of Portland cements are applied. Master of Science Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, BrazilGoogle Scholar
  43. Tiecher F, Gomes MEB, Dal Molin DCC, Hasparyk NP, Monteiro PJM (2009) Influence of microcrystalline material into volcanic rocks for alkali-aggregate reaction. In: 59th Congresso Brasileiro do Concreto, Curitiba, BrazilGoogle Scholar
  44. Tiecher F, Dal Molin DCC, Gomes MEB, Hasparyk NP, Monteiro PJM (2012) Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction. Cem Concr Compos 34(10):1130–1140CrossRefGoogle Scholar
  45. Valduga L, Dal Molin DCC, Paulon VA (2006) Basalts potential reactivity survey in Brazil. In: 2nd Simpósio sobre reação álcali-agregado em estruturas de concreto, Rio de Janeiro, BrazilGoogle Scholar
  46. Vola G, Berra M, Rondena E (2011) Petrographic quantitative analysis of ASR susceptible Italian aggregates for concrete. In: Proceedings of the 13th Euroseminar on Microscopy Applied to Building Materials, Ljubljana, Slovenia, 10 pGoogle Scholar
  47. Wakizaka Y (2000) Alkali-silica reactivity of Japanese rocks. Eng Geol 56(1-2):211–221CrossRefGoogle Scholar
  48. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CGAMA (CIC-UNS) - Geology Department – UNSBahía BlancaArgentina
  2. 2.Área Departamental Construcciones, Facultad de IngenieríaUNLPLa PlataArgentina
  3. 3.LEMIT-CIC, Laboratorio de Entrenamiento Multidisciplinario para la Investigación TecnológicaLa PlataArgentina
  4. 4.CICTERRA (CONICET-UNC)CórdobaArgentina

Personalised recommendations