Bulletin of Engineering Geology and the Environment

, Volume 78, Issue 7, pp 5345–5355 | Cite as

Effect of UV radiation on chromatic parameters in serpentinites used as dimension stones

  • Rafael NavarroEmail author
  • Lidia Catarino
  • Dolores Pereira
  • Francisco Paulo de Sá Campos Gil
Original Paper


Colour is an important parameter that must be taken into account if aesthetic homogeneity in both construction and restoration work is to be achieved. In serpentinites, the different degrees of serpentinization or carbonation can influence their final colour. Sunlight, especially ultraviolet (UV) radiation, is a common agent that can decay properties such as hue, lightness, and chroma, and can have a very significant effect on the ageing process of dimension stones. Testing the effects of UV radiation is fundamental for predicting how materials may behave upon exposure. In this work, the surface alteration of materials due to UV radiation by means of arc-xenon lamps was carried out to determine the degree of variation in colour parameters in serpentinites used as dimension stones. It was observed that the effect of UV radiation on the materials studied was low, and that the samples tended to darken and become yellow. Gloss was the parameter that varied the most, which decreased in all the cases analysed. Associations were observed between the loss of gloss and a decrease in some parameters such as open porosity, water absorption at atmospheric pressure and water absorption by capillarity (direct), bulk density and uniaxial compression strength (reverse). The mineralogical composition of the stone was the main factor that influenced the loss of gloss. This research highlights the importance of the detailed study of colour variation in dimension stones due to exposure to UV radiation. The incorrect assessment of the damage that could be caused by this agent can lead to severe aesthetic destruction that may result in expensive legal actions.


Chroma Colour Dimension stone Gloss Lightness Serpentinite 



This work was made possible thanks to the FCT (Fundação para a Ciência e a Tecnologia, I.P.) and by the research project UID/Multi/00073/2013 of the Geosciences Centre of the University of Coimbra (Portugal), the University of Salamanca through the USAL Research Program: project KDGZ / 463 AC01, Spanish Geological Survey (I.G.M.E.) through the project CONSTRUROCK (Natural stone and their relation with historic and monumental heritage and new building network) and the General Foundation of the University of Salamanca through the call Doctor TCUE 2015. The authors sincerely thank the two anonymous reviewers whose comments and suggestions helped to improve this manuscript.


  1. ASTM C-1526-02 (2002) Standard specification for serpentine dimension stone. American Society for Testing and Materials International, PennsylvaniaGoogle Scholar
  2. Bams V, Dewaele S (2007) Staining of white marble. Mater Charact 58:1052–1062. CrossRefGoogle Scholar
  3. Becherini F, Pastorelli G, Valotto G, Gambirasi A, Bianchin S, Favaro M (2017) Effects of protective treatments on particle deposition and colour variation in stone surfaces exposed to an urban environment. Prog Org Coat 112:75–85. CrossRefGoogle Scholar
  4. Benavente D et al (2003) Influence of surface roughness on color changes in building stones. Color Res Appl 28:343–351. CrossRefGoogle Scholar
  5. Blanchard I (2012) The use of natural stone for internal flooring. Proc Inst Civ Eng Constr Mater 165:177–187. CrossRefGoogle Scholar
  6. Cardenes V, García-Guinea J, Monterroso C, de la Horra R (2008) Protocol for assessing the effectiveness of protective coatings for roofing slate. Mater Constr 28:263–279. CrossRefGoogle Scholar
  7. Careddu N, Marras G (2013) The effects of solar UV radiation on the gloss values of polished stone surfaces. Constr Build Mater 49:828–834. CrossRefGoogle Scholar
  8. Carmona-Quiroga PM, Jacobs RMJ, Martinez-Ramirez S, Viles HA (2017) Durability of anti-graffiti coatings on stone: natural vs accelerated weathering. PLoS ONE 12:e0172347. CrossRefGoogle Scholar
  9. Carmona-Quiroga PM, Martinez-Ramirez S, Viles HA (2018) Efficiency and durability of a self-cleaning coating on concrete and stones under both natural and artificial. Appl Surf Sci 433:312–320. CrossRefGoogle Scholar
  10. Cayless A, Coaton JR, Marsden AM (eds) (2011) Lamps and lighting, 4th edn. Taylor & Francis, New YorkGoogle Scholar
  11. CIE (2004) CIE 15 technical report: colorimetry, vol 15.4, 3rd edn. International Commission on Illumination, ViennaGoogle Scholar
  12. Concha-Lozano N, Lafon D, Sabiri N, Gaudon P (2013) Color thresholds for aesthetically compatible replacement of stones. Color Res Appl 38:356–363. CrossRefGoogle Scholar
  13. Cooper BJ (2015) The "Global Heritage Stone Resource" designation: past, present and future. In: Pereira D, Marker B, Kramar S, Cooper B, Schouenborg B (eds) Global heritage stone: towards international recognition of building and ornamental stones. Geol Soc Lond Spec Publ 407:11–20.
  14. Erdogan M (2000) Measurement of polished rock surface brightness by image analysis method. Eng Geol 57:65–72. CrossRefGoogle Scholar
  15. Esbert RM, Ordaz J, Alonso FJ, Montoto M, González-Limón T, Álvarez de Buergo-Ballester M (1997) Manual de diagnosis y tratamiento de materiales pétreos y cerámicos. Collegi d’Apparelladors i Arquitectes Tècnics de Barcelona, BarcelonaGoogle Scholar
  16. Gómez-Pugnaire MT, Braga JC, Martin JM, Sassi FP, Del Moro A (2000) Regional implications of a Palaeozoic age for the Nevado-Filabride cover of the Betic cordillera, Spain. Schweiz Mineral Petrogr Mitt 80:45–52Google Scholar
  17. Grossi MC, Esbert RM, Alonso FJ, Valdeón L, Ordaz J, Díaz-Pache F (2000) Colour changes and reactivity to SO2 of some cladding stones at the "Gran Teatre del Liceu" (Barcelona; Spain). In: Fassina V (ed) Ninth International Congress on Deterioration and Conservation of Stone, Venice, June 19–24 2000. Elsevier, pp 323–328Google Scholar
  18. Harrell JA, Broekmans MATM, Godfrey-Smith DI (2007) The origin, destruction and restoration of colour in Egyptian travertine. Archaeom 49:421–436. CrossRefGoogle Scholar
  19. INM (2004) Guía resumida del clima en España 1971–2000: Plan Estadístico Nacional, 2001–2004 vol 2013. Series Estadísticas, vol 2/12/2013. Dirección General del Instituto Nacional de Meteorología-Ministerio de Medio Ambiente MadridGoogle Scholar
  20. ISO 11341 (2004) Paints and varnishes. Artificial weathering and exposure to artificial radiation. Exposure to filtered xenon-arc radiation. A.E.N.O.R, MadridGoogle Scholar
  21. Marker B (2015) Procedures and criteria for the definition of Global Heritage Stone Resources. In: Pereira D, Marker B, Kramar S, Cooper B, Schouenborg B (eds) Global heritage stone: towards international recognition of building and ornamental stones. Geol Soc Lond Spec Publ407:1–4.
  22. Martín-Algarra AC et al (2004) Zonas Internas Béticas. In: Vera JA (ed) Geología de España. Sociedad Geológica de España (S.G.E.)-Instituto Geológico y Minero de España (I.G.M.E.), Madrid, Spain, pp 395–444Google Scholar
  23. Meierding TC (2005) Weathering of serpentine stone buildings in the Philadelphia region: a geographic approach related to acidic deposition. In: Turkington AV (ed) Stone decay in the architectural environment. Geol Soc Lond Spec Publ 399:17–25Google Scholar
  24. Mokrzycki WS, Tatol M (2011) Colour difference E - a survey. Mach Graph Vis 20:383–411Google Scholar
  25. Navarro R (2016) Estudio de las serpentinitas del Complejo Nevado-Filábride (Cordillera Bética). Usos y aplicaciones en construcción y patrimonio arquitectónico. Dissertation, University of SalamancaGoogle Scholar
  26. Navarro R, Pereira MD, Gimeno A, Del Barrio S (2013) Verde Macael: a serpentinite wrongly referred to as a marble. Geoscience 3:102–113. CrossRefGoogle Scholar
  27. Navarro R, Pereira D, Rodríguez-Navarro C, Sebastian-Pardo E (2015) The Sierra Nevada serpentinites: the serpentinites most used in Spanish heritage buildings In: Pereira D, Marker B, Kramar S, Cooper B, Schouenborg B (eds) Global Heritage Stone: Towards International Recognition of Building and Ornamental Stones. Geol Soc Lond Spec Publ 407:101–108.
  28. Navarro R, Pereira D, Gimeno A, Del Barrio S (2018) Influence of natural carbonation process in serpentinites used as construction and building materials. Constr Build Mater 170:537–546. CrossRefGoogle Scholar
  29. Ozcelik Y, Careddu N, Yilmazkaya E (2012) The effects of freeze–thaw cycles on the gloss values of polished stone surfaces. Cold Reg Sci Technol 82:49–55. CrossRefGoogle Scholar
  30. Pereira MD, Yenes M, Blanco JA, Peinado M (2007) Characterization of serpentinites to define their appropriate use as dimension stone. In: Prikryl R, Smith BJ (eds) Building Stone Decay: From Diagnosis to Conservation. Geol Soc Lond Spec Publ 271:55–62Google Scholar
  31. Pereira MD, Peinado M, Blanco JA (2013) Misuse of natural stone for construction and the consequences in buildings. Case of study of serpentinites. J Mater Civ Eng 25:1563–1567. CrossRefGoogle Scholar
  32. Poli T, Toniolo L, Sansonetti A (2006) Durability of protective polymers: the effect of UV and thermal ageing. Macromol Symp 238:178–183. CrossRefGoogle Scholar
  33. Pozo-Antonio JS, Montojo C, Lopez de Silanes ME, de Rosario I, Rivas T (2017) In situ evaluation by colour spectrophotometry of cleaning and protective treatments in granitic cultural heritage. Int Biodeterior Biodegrad 123:251–261. CrossRefGoogle Scholar
  34. Pozo-Antonio JS, Rivas T, Jacobs RMJ, Viles HA, Carmona-Quiroga PM (2018) Effectiveness of commercial anti-graffiti treatments in two granites of different texture and mineralogy. Prog Org Coat 116:70–82. CrossRefGoogle Scholar
  35. Prieto B, Sanmartín P, Silva B, Martínez-Verdú F (2010) Measuring the color of granite rocks: a proposed procedure. Color Res Appl 35:368–375. CrossRefGoogle Scholar
  36. Primavori P (2006) Technologies for stone extraction and processing. In: Promorana SRL (ed) Directory Marmomacchine. Associazione Italiana Marmomacchine, MilanoGoogle Scholar
  37. Puga E, Díaz de Federico A, Nieto JM (2002) Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a review. Geodin Acta 15:23–43. CrossRefGoogle Scholar
  38. Sáez-Pérez MP, Rodríguez-Gordillo J (2008) The influence of solar radiation on the deterioration of the marble columns in the courtyard of the lions in the Alhambra. Stud Conserv 53:145–157. CrossRefGoogle Scholar
  39. Sancho Ávila JM, Riesco-Martín J, Jiménez-Alonso C, Sánchez de Cos-Escuin MC, Montero-Cadalso J, López-Bartolomé M (2012) Atlas de radiación solar en España utilizando datos del SAF de Clima de EUMETSAT. AEMET-MAAMA, MadridGoogle Scholar
  40. Sanmartín P (2012) Cuantificación del color en el estudio de la formación de biofilms en rocas graníticas del Patrimonio histórico artístico. Dissertation, University de Santiago de CompostelaGoogle Scholar
  41. Sanmartín P, Silva B, Prieto B (2011) Effect of surface finish on roughness, color and gloss of ornamental granites. J Mater Civ Eng 23:1239–1248. CrossRefGoogle Scholar
  42. Siivola J, Schmid R (2007) List of mineral abbreviations. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms. Cambridge University Press, Cambridge, pp 93–110Google Scholar
  43. Simonot L, Elias M (2003) Color change due to surface state modification. Color Res Appl 28:45–49. CrossRefGoogle Scholar
  44. Smith KJ (1997) Colour-order systems, colour spaces, colour difference and colour scales. In: McDonald R (ed) Colour physics for industry. Society of Dyers and Colourists, West Yorkshire, pp 121–208Google Scholar
  45. Sousa LMO, Gonçalves BMM (2012) Color assessment of granitic rocks and implications for their ornamental utilization color. Res Appl 37:375–383. Google Scholar
  46. Sterflinger K (2011) Biodeterioration of stone. In: Siegesmund S, Snethlage R (eds) Stone in architecture: properties, durability, 4th edn. Springer, Berlin, pp 291–302Google Scholar
  47. Urosevic M, Yebra-Rodríguez A, Sebastián-Pardo E, Cardell C (2012) Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (S Spain). Sci Total Environ 414:564–575CrossRefGoogle Scholar
  48. Vera JAE (2004) Cordillera Bética y Baleares. In: Vera JA (ed) Geología de España. Sociedad Geológica de España (S.G.E.)-Instituto Geológico y Minero de España (I.G.M.E.), Madrid, pp 345–464Google Scholar
  49. Völz HG (2001) Industrial color testing: fundamentals and techniques, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  50. Winkler EM (1979) The lightness (reflectance) of stone in the stone industry. APT Bull 11:7–16 Google Scholar
  51. Winkler EM (1997) Stone in architecture: properties, durability, 3rd edn. Springer, Berlin. CrossRefGoogle Scholar
  52. Wood KA, Cypcar C, Hedhl L (2000) Predicting the exterior durability of new fluoropolymer coatings. J Fluor Chem 104:63–71. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology, Faculty of ScienceUniversity of SalamancaSalamancaSpain
  2. 2.Department of Earth Sciences, Geosciences Centre (CGEO)University of CoimbraCoimbraPortugal
  3. 3.Department of Physic, Centre for Physics of the University of Coimbra (CFisUC), and Molecular Chemical-Physics UnitUniversity of CoimbraCoimbraPortugal

Personalised recommendations