Efficiency of ambient vibration HVSR investigations in soil engineering studies: backfill study in the Algiers (Algeria) harbor container terminal

  • M. HellelEmail author
  • E. H. Oubaiche
  • J.-L. Chatelain
  • R. Bensalem
  • N. Amarni
  • M. Boukhrouf
  • M. Wathelet
Original Paper


This paper deals with the contribution of the ambient vibration horizontal-to-vertical spectral ratio (HVSR) method in soil engineering studies, particularly in backfill compactness assessment. The study is based on 60 ambient vibration recordings performed in 2015 at the container terminal of Algiers harbor, subjected a year before to a geotechnical study based on 23 boreholes and 13 cone penetration tests (CPT) for backfill improvement. To highlight the contribution of the HVSR method, the results of the geotechnical and HVSR studies are first analyzed separately and then in combination. The HVSR method provides a compactness zonation map based on peak amplitude variation. Both methods define the same pattern: a southern section where the backfill is more compact, and a northern section where the backfill is less compact. This shows that the HVSR peak amplitudes are sensitive to compactness variations, which may be sufficient for qualitative zonation. In addition, with the combination of the two methods, rough estimations of shear-wave velocity and thickness of the backfill can be retrieved. This study shows that the HVSR method can be a very useful investigative tool in soil engineering studies. When the HVSR method is deployed before any conventional technique, a geotechnical investigation campaign can be significantly optimized. Moreover the combined interpretation brings complementary quantitative soil information.


HVSR technique Ambient vibration CPT test investigation Backfill compactness zonation 



We thank the French Institut de Recherche pour le Développement (IRD) for their financial contribution and equipment lent for the ambient vibration investigation.


  1. Amarni, N. (2014) Etude géotechnique pour la consolidation d’un terre-plein littoral au port d’Alger (in French). Engineering degree dissertation. 69pp. Ecole Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL)Google Scholar
  2. Ameratunga J, Sivakugan N, Das BM (2016) Correlations of soil and rock properties in geotechnical engineering. Springer India.
  3. Bensalem R, Chatelain J-L, Machane D, Oubaiche EH, Hellel M, Guillier B, Djeddi M, Djadia L (2010) Ambient vibration techniques applied to explain heavy damage caused in Corso (Algeria) by the 2003 Boumerdes earthquake: understanding seismic amplification due to gentle slopes. Seismol Res Lett 81:928–940. CrossRefGoogle Scholar
  4. Bergdahl U., Ottosson, E., and Malmborg, B.S. (1993) Plattgrundläggning (Spread foundations) (in Swedish). AB Svensk Byggtjänst, Stockholm, 282p. ISBN : 9173326623 9789173326629Google Scholar
  5. Bitri A, Samyn K, Brûlé S, Javelaud EH (2013) Assessment of ground compaction using multi-channel analysis of surface wave data and cone penetration tests. Near Surface Geophys.
  6. Chatelain J-L, Guéguen P, Guillier B, Fréchet J, Bondoux F, Sarrault J, Sulpice P, Neuville J-M (2000) CityShark: a user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response studies. Seismol Res Lett 71:698–703CrossRefGoogle Scholar
  7. Chatelain J-L, Guillier B, Parvez IA (2008a) False site effects: the Anjar case, following the 2001 Bhuj (India) earthquake. Seismol Res Lett 79:816–819. CrossRefGoogle Scholar
  8. Chatelain J-L, Guillier B, Cara F, Duval A-M, Atakan K, Bard P-Y, the WP02 SESAME team (2008b) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng 6:33–74. CrossRefGoogle Scholar
  9. Chatelain J-L, Guillier B, Guéguen P, Fréchet J, Sarrault J (2012) Ambient vibration recording for single-station, array and building studies made simple: CityShark II, 3, 6A. Int J Geosci.
  10. Di Giacomo D, Gallipoli M-R, Muciarrelli M, Parolai S, Richwalski S-M (2005) Analysis and modeling of HVSR in the presence of a velocity inversion: the case of Venosa, Italy. Bull Seismol Soc Am 95(6):2364–2372. CrossRefGoogle Scholar
  11. Dunand, F., Bard, P.Y., Chatelain, J.-L., Guéguen, P., Vassail, T. and Frasi, M.N. (2002) Damping and frequency from randomdec method applied to in-situ measurements of ambient vibrations. Evidence for effective soil structure interaction. Proceeding of the 12 th European Conference on Earthquake Engineering. London, UKGoogle Scholar
  12. Ekanayake, S; Leo, C; Liyanapathirana, S; and Harutoonian, P. (2016). Integration of invasive and non-invasive techniques in ground characterization. Proceeding of the 5th International Conference on Geotechnical and Geophysical Site Characterisation, Sydney, Austaralia. ISBN 978–0–9946261–1-0Google Scholar
  13. Fäh D, Rüttener E, Noack T, Kruspan P (1997) Microzonation of the city of Basel. J Seismol 1:87–102. CrossRefGoogle Scholar
  14. Field E, Jacob K (1993) The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett 20(2):925–2,928Google Scholar
  15. French Standard, NFP 94- 94-261 (2013). Justification des ouvrages géotechniques, Normes d’application nationale de l’Eurocode 7, Fondations superficielles et Calcul géotechnique (in French).Google Scholar
  16. Galea P, D’Amico S, Farrugia D (2014) Dynamic characteristics of an active coastal spreading area using ambient noise measurements-Anchor Bay, Malta. Geophys J Int.
  17. García-Jerez A, Luzón F, Navarro M, Pérez-Ruiz JA (2006) Characterization of the sedimentary cover of the Zafarraya Basin, southern Spain, by means of ambient noise. Bull Seismol Soc Am 96(3):957–967. CrossRefGoogle Scholar
  18. Gosar A, Lenart A (2010) Mapping the thickness of sediments in the Ljubljana moor basin (Slovenia) using microtremors. Bull Earthq Eng 8:501. CrossRefGoogle Scholar
  19. Guéguen P, Chatelain J-L, Guillier B, Yepes H, Egred J (1998) Site effect and damage distribution in Pujili (Ecuador) after the 28 march 1996 earthquake. Soil Dyn Earthq Eng 17:329–334CrossRefGoogle Scholar
  20. Guillier B, Atakan K, Chatelain J-L, Havskov J, Ohrnberger M, Cara F, Duval A-M, Zacharopoulos S, Teves-Costa P, the SESAME Team (2008) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6(1):3–32. CrossRefGoogle Scholar
  21. Harutoonian P, Leo CJ, Doanh T, Castellaro S, Zou JJ, Liyanapathirana DS, Wong H, Tokeshi K (2012) Microtremor measurements of rolling compacted ground. Soil Dyn Earthq Eng.
  22. Harutoonian P, Leo CJ, Tokeshi K, Doanh T, Castellaro S, Zou JJ, Liyanapathirana DS, Wong H (2013) Investigation of dynamically compacted ground by HVSR-based approach. Soil Dyn Earthq Eng 46:20–29. CrossRefGoogle Scholar
  23. Hegazy, Y.A. and Mayne, P.W. (1995). Statistical correlations between VS and cone penetration data for different soil types. Proceeding of Interernational Symposium on Cone Penetration Testing, CPT’95, Linkoping, Sweden, Vol. 2: 173–178Google Scholar
  24. Heitor A, Indraratna B, Rujikiatkamjorn C (2014) Assessment of the post-compaction characteristics of a silty sand. Aust Geomechanics J 49(4):125–131Google Scholar
  25. Hellel M, Chatelain J-L, Guillier B, Machane D, Bensalem R, Oubaiche EH, Haddoum H (2010) Heavier damage without site effects and site effects with lighter damages: Boumerdes city (Algeria) after the may 2003 earthquake. Seismol Res Lett 81:37–43. CrossRefGoogle Scholar
  26. Hellel M, Oubaiche EH, Chatelain J-L, Machane D, Bensalem R, Guillier B, CheikhLounis G (2012) Basement mapping with Single Station and Array ambient vibration data: delineating faults under Boumerdes City, Algeria. Seismol Res Lett.
  27. Ibs-Von Seth M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89:250–259Google Scholar
  28. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88:228–241Google Scholar
  29. Lermo J, Chavez-Garcia FJ (1993) Site effect evaluation using spectral ratios with only one station. Bull Seismol Soc Am 83(5):1574–1594Google Scholar
  30. Mayne, P.W. (2006). In-situ test calibrations for evaluating soil parameters. Proceeding of the Second International Workshop on Characterization and Engineering Properties of Natural Soils II, Singapore. doi:
  31. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep Railway Tech Res Inst 30:25–30Google Scholar
  32. Navarro M, Garcí a-Jerez A, Alcala FJ, Vidal F, Enomoto T (2014) Local site effect microzonation of Lorca town (SE Spain). Bull Earthq Eng.
  33. Nogoshi M, Igarashi T (1970) On the propagation characteristics of microtremors. J Seismol Soc Jpn 23:264–280 (in Japanese with English abstract) Google Scholar
  34. Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremors. J Seismol Soc Jpn 24:24–40 (in Japanese with English abstract) Google Scholar
  35. Oubaiche EH, Chatelain J-L, Bouguern A, Bensalem R, Machane D, Hellel M, Khaldaoui F, Guillier B (2012) Experimental relationship between ambient vibration H/V peak amplitude and shear-wave velocity contrast. Seismol Res Lett 83(6):1038–1046. CrossRefGoogle Scholar
  36. Oubaiche EH, Chatelain J-L, Hellel M, Whatelet M, Machane D, Bensalem R, Bouguern A (2016) The relationship between ambient vibration H/V and SH transfer function: some experimental results. Seismol Res Lett 87:6. CrossRefGoogle Scholar
  37. Pilz M, Parolai S, Bindi D, Saponaro A, Abdybachaev U (2014) Combining seismic noise techniques for landslide characterization. Pure Appl Geophys 171(8):1729–1745. CrossRefGoogle Scholar
  38. Roslan M-A, Madun A, Zainalabidin M-H et al (2018) Soil compaction assessment using spectral analysis of surface waves (SASW). J Phys Conf Ser 995:012199. CrossRefGoogle Scholar
  39. SESAME (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, processing and interpretation. European Commission – Research General Directorate Project No. EVG1-CT-2000–00026 SESAME, report D23.12. http://SESAME-FP5.obs.ujf-grenoble.fr605. Accessed Jan 2018
  40. Tarabusi G, Caputo R (2016) The use of HVSR measurements for investigating buried tectonic structures: the Mirandola anticline, northern Italy, as a case study. Int J Earth Sci.
  41. Tokeshi, J.C., and Sugimura, Y. (1998). On the estimation of the natural period of the ground using simulated microtremors, Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 2, 651–664Google Scholar
  42. Tokeshi K, Harutoonian P, Leo CJ, Liyanapathirana S (2013) Use of surface waves for geotechnical engineering applications in Western Sydney. Adv Geosci 35:37–44. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Hellel
    • 1
    Email author
  • E. H. Oubaiche
    • 2
  • J.-L. Chatelain
    • 3
  • R. Bensalem
    • 2
  • N. Amarni
    • 4
  • M. Boukhrouf
    • 5
  • M. Wathelet
    • 6
  1. 1.Faculté des Sciences de la Terre, de la Géographie et de l’Aménagement du TerritoireUniversité des Sciences et de la Technologie Houari Boumedienne (USTHB)AlgiersAlgeria
  2. 2.Centre National de Recherche Appliquée en Génie Parasismique (CGS)AlgiersAlgeria
  3. 3.Institut de Recherche pour le Développement (IRD), ISTerreGrenobleFrance
  4. 4.École Nationale Supérieure des Sciences de la Mer et de l’Aménagement du Littoral (ENSSMAL), Bois des CarsAlgiersAlgeria
  5. 5.Contrôle Technique des Travaux Publiques (CTTP)AlgiersAlgeria
  6. 6.University Grenoble Alpes, University Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerreGrenobleFrance

Personalised recommendations