Analogy between grid-based modeling of landslide and avalanche using GIS with surface flow analysis

  • Sung-Min Kim
  • Hyeong-Dong ParkEmail author
Original Paper


Mountainous areas with steep slopes are vulnerable to landslide and often to avalanche according to the climate condition. In the rainy season, heavy rainfall causes landslides, and avalanche can be a serious threat to mountainous areas in winter. However, avalanche has not been emphasized relatively as compared with landslides in some nations like Korea. This paper estimates the landslide and avalanche hazard of the mountainous area with distinct seasons such as Provo Canyon in Utah and Seorak Mountain in Korea. To predict susceptibility of landslides and avalanches, several geomorphological factors were considered. These predictive factors were derived from digital elevation map, and the grid-based modeling was applied for landslide and avalanche susceptibility mapping within a geographical information system (GIS). To simulate debris flow and avalanche paths from the high potential areas, GIS-based surface flow analysis was used. As a result, this study provides information about ares prone to natural hazards, and it can be useful ancillary data for people attempting to avoid potentially hazardous areas.


Landslides Avalanches Mountainous area Surface flow analysis Weight-of-evidence 



This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2009-0085129), the Brain Korea 21 Plus Project (No.21A20130012821), and the Research Institute of Energy and Resources, Seoul National University, South Korea.


  1. Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihoodfrequency ratio and weighted linear combination models. Environ Geol 54:1127–1143. doi: 10.1007/s00254-007-0882-8 CrossRefGoogle Scholar
  2. American Avalanche Association (2003) The avalanche review. A publication of the American Avalanche Association 22Google Scholar
  3. Ancey C (2013) Snow avalanches. In: Schrefler B, Delage P (eds) Environmental Geomechanics. Wiley, Hoboken. doi: 10.1002/9781118619834.ch2 Google Scholar
  4. Ayalew L, Yamagishi H, Marui H, Kanno T (2005) Landslides in Sado Island of Japan. Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Environ Geol 81:432–445. doi: 10.1016/j.enggeo.2005.08.004 CrossRefGoogle Scholar
  5. Aydın A, Bühler Y, Christen M, Gürer I (2014) Avalanche situation in Turkey and back calculation of selected events. Nat Hazard Earth Sys 14:1145–1154. doi: 10.5194/nhess-14-1145-2014 CrossRefGoogle Scholar
  6. Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining. J Glaciol 45:242–254. doi: 10.3198/1999JoG45-150-242-254 CrossRefGoogle Scholar
  7. Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS, Comp. Meth. Geos., vol. 13. Pergamon, New York, 398Google Scholar
  8. Bonham-Carter GF, Agterberg FP, Wright DF (1988) Integration of geological data sets for gold exploration in Nova Scotia. Photogram Eng Remote Sens 54:1585–1592. doi: 10.1029/SC010p0015 Google Scholar
  9. Bühler Y, Kumar S, Veitinger J, Christen M, Stoffel A, Snehmani (2013) Automated identification of potential snow avalanche release areas based on digital elevation models. Nat Hazard Earth Sys 13:1321–1335. doi: 10.5194/nhess-13-1321-2013 CrossRefGoogle Scholar
  10. Cappabianca F, Barbolini M, Natale L (2008) Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol 54:193–205. doi: 10.1016/j.coldregions.2008.06.005 CrossRefGoogle Scholar
  11. Choi Y, Yi H, Park HD (2011) A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure. Comput Geosci 37:1035–1044. doi: 10.1016/j.cageo.2010.07.008 CrossRefGoogle Scholar
  12. Christen M, Bartelt P, Gruber U (2002) AVAL-1D: an avalanche dynamics program for the practice. Interpraevent 2002. Congress publication, Matsumoto 2:715-725Google Scholar
  13. Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. doi: 10.1016/j.coldregions.2010.04.005 CrossRefGoogle Scholar
  14. Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and applications of geomorphology. Springer-Verlag, Berlin, pp 268–317CrossRefGoogle Scholar
  15. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Masuda T, Nishino K (2008) GIS-based weights-of-evidence modeling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ Geol 54:311–324. doi: 10.1007/s00254-007-0818-3 CrossRefGoogle Scholar
  16. Delparte D (2008) Avalanche terrain modeling in Glacier National Park, Canada. PhD Thesis, University of Calgary, Calgary, AB, Canada, p 179Google Scholar
  17. Dikau R, Brunsden D, Schrott L, Ibsen ML (1996) Landslide recognition: identification, movement and causes. Wiley, Chichester, p 274Google Scholar
  18. Ercanoglu M, Gokceoglu C (2002) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ Geol 41:720–730. doi: 10.1007/s00254-001-0454-2 CrossRefGoogle Scholar
  19. Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazard Earth Sys 7:89–101. doi: 10.5194/nhess-7-89-2007 CrossRefGoogle Scholar
  20. Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Comput Geosci 17:413–422. doi: 10.1016/0098-3004(91)90048-I CrossRefGoogle Scholar
  21. Gauer P, Kristensen K (2016) Four decades of observations from NGI’s full-scale avalanche test site Ryggfonn—summary of experimental results. Cold Reg Sci Technol 125:162–176. doi: 10.1016/j.coldregions.2016.02.009 CrossRefGoogle Scholar
  22. Graveline MH, Germain D (2016) Ice-block fall and snow avalanche hazards in northern Gaspésie (eastern Canada): triggering weather scenarios and process interactions. Cold Reg Sci Technol 123:81–90. doi: 10.1016/j.coldregions.2015.11.012 CrossRefGoogle Scholar
  23. Gruber S (2007) A mass-conserving fast algorithm to parameterize gravitational transport and deposition using digital elevation models. Water Resour Res 43:1–8. doi: 10.1029/2006WR004868 CrossRefGoogle Scholar
  24. Gruber U, Margreth S (2001) Winter 1999: a valuable test of the avalanche-hazard mapping procedure in Switzerland. Ann Glaciol 32:328–332. doi: 10.3189/172756401781819238 CrossRefGoogle Scholar
  25. He B, Chen J, Chen C, Liu Y (2012) Mineral prospectivity mapping method integrating multi-sources geology spatial data sets and case-based reasoning. J Geogr Inf Syst 4:77–85. doi: 10.4236/jgis.2012.42011 Google Scholar
  26. Heathwaite AL, Quinn PF, Hewett CJM (2005) Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation. J Hydrol 304:446–461. doi: 10.1016/j.jhydrol.2004.07.043 CrossRefGoogle Scholar
  27. Heller V, Hager WH (2011) Wave types of landslide generated impulse waves. Ocean Eng 38:630–640. doi: 10.1016/j.oceaneng.2010.12.010 CrossRefGoogle Scholar
  28. Hofmeister RJ, Miller DJ, Mills KA, Hinkle JC, Beier AE (2002) GIS overview map of potential rapidly moving landslide hazards in Western Oregon. Interpretive Map Series IMS-22. Accessed 01 Dec 2016
  29. Horton P, Jaboyedoff M, Rudaz BEA, Zimmermann M (2013) Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Nat Hazard Earth Sys 13:869–885. doi: 10.5194/nhess-13-869-2013 CrossRefGoogle Scholar
  30. Iverson RM (1997) The physics of debris flows. Rev Geophys 35:245–296. doi: 10.1029/97RG00426 CrossRefGoogle Scholar
  31. Jackson LE Jr, Hungr O, Gardner JS, Mackay C (1989) Cathedral Mountain debris flows, Canada. B Eng Geol Environ 40:35–54. doi: 10.1007/BF02590340 Google Scholar
  32. Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Springer, Berlin, p 170Google Scholar
  33. Johnson AM (1984) Debris flow. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 257–361Google Scholar
  34. Kamp U, Growley BJ, Khattak GA, Owen LA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631–642. doi: 10.1016/j.geomorph.2008.03.003 CrossRefGoogle Scholar
  35. Kim SM, Suh J, Oh S, Son J, Hyun CU, Park HD, Choi Y (2016) Assessing and prioritizing environmental hazards associated with abandoned mines in Gangwon-do, South Korea: the Total mine hazards index. Environ Earth Sci 75:1–14. doi: 10.1007/s12665-016-5283-4 CrossRefGoogle Scholar
  36. Lee S (2007) Application and verification of fuzzy algebraic operators to landslide susceptibility mapping. Environ Geol 52:615–623. doi: 10.1007/s00254-006-0491-y CrossRefGoogle Scholar
  37. Lee S, Talib JA (2005) Probabilistic landslide susceptibility and factor effect analysis. Environ Geol 47:982–990. doi: 10.1007/s00254-005-1228-z CrossRefGoogle Scholar
  38. Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131. doi: 10.1007/s00254-002-0616-x CrossRefGoogle Scholar
  39. Li J, Yuan J, Bi C, Luo D (1983) The main features of the mudflow in Jiang-Jia ravine (SW China). Z Geomorphol 27:325–341Google Scholar
  40. Li J, Chen N, Wang T, Iqbal J, Xiang L (2017) A model for total volume of debris flow with intermittent surges based on maximum peak discharge and movement time. Geosyst Eng 20:181–194. doi: 10.1080/12269328.2016.1248298 CrossRefGoogle Scholar
  41. Maggioni M (2004) Avalanche release areas and their influence on uncertainty in avalanche hazard mapping. PhD Thesis, University of Zurich, Zurich, p 139Google Scholar
  42. Maggioni M, Gruber U (2003) The influence of topographic parameters on avalanche release dimension and frequency. Cold Reg Sci Technol 37:407–419. doi: 10.1016/S0165-232X(03)00080-6 CrossRefGoogle Scholar
  43. Maggioni M, Freppaz M, Ceaglio E, Godone D, Viglietti D, Zanini E, Barbero M, Barpi F, Brunetto MB, Bovet E, Chiaia B, De Biagi V, Frigo B, Pallara O (2013) A new experimental snow avalanche test site at Seehore peak in Aosta Valley (NW Italian alps)-part I: conception and logistics. Cold Reg Sci Technol 85:175–182. doi: 10.1016/j.coldregions.2012.09.006 CrossRefGoogle Scholar
  44. Mahboob MA, Iqbal J, Atif I (2015) Modeling and simulation of glacier avalanche: a case study of Gayari sector glaciers hazards assessment. IEEE T Geosci Remote 53:5824–5834. doi: 10.1109/TGRS.2015.2419171 CrossRefGoogle Scholar
  45. Margreth S, Stoffel L, Wilhelm C (2003) Winter opening of high alpine pass roads – analysis and casa studies from the Swiss alps. Cold Reg Sci Technol 37:467–482. doi: 10.1016/S0165-232X(03)00085-5 CrossRefGoogle Scholar
  46. McClung D (2001) Characteristics of terrain, snow supply and forest cover for avalanche initiation caused by logging. Ann Glaciol 32:223–229. doi: 10.3189/172756401781819391 CrossRefGoogle Scholar
  47. Morton DM, Campbell RH (1974) Spring mudflows at Wrightwood, southern California. Q J Eng Geol 7:377–384. doi: 10.1144/GSL.QJEG.1974.007.04.09 CrossRefGoogle Scholar
  48. Neuhauser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24. doi: 10.1016/j.geomorph.2006.08.002 CrossRefGoogle Scholar
  49. O’Callaghan JF, Mark DM (1984) The extraction of drainage networks from digital elevation data. Comput Vision Graph 28:323–344. doi: 10.1016/S0734-189X(84)80011-0 CrossRefGoogle Scholar
  50. Oh H (2010) Landslide susceptibility analysis and validation using weight-of-evidence model. J of Geol Soc Korea 46:157–170Google Scholar
  51. Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res-Oceans 110:1–23. doi: 10.1029/2004JC002778 CrossRefGoogle Scholar
  52. Park HD, Chon HT (1998) A quantitative analysis on the influence of the rainfall on the landslides in Korea. International conference on environmental management. New South Wales, Australia, pp 1003–1009Google Scholar
  53. Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat Hazard Earth Sys 13:2833–2849. doi: 10.5194/nhess-13-2833-2013 CrossRefGoogle Scholar
  54. Pierson TC (1980) Erosion and deposition by debris flows at Mt. Thomas, North Canterbury, New Zealand. Earth Surf Processes 5:227–247. doi: 10.1002/esp.3760050302 CrossRefGoogle Scholar
  55. Salm B (2003) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226. doi: 10.3198/1993AoG18-1-221-226 CrossRefGoogle Scholar
  56. Schmid UG, Sardemann S (2003) High-frequency avalanches: release area characteristics and run-out distances. Cold Reg Sci Technol 37:439–451. doi: 10.1016/S0165-232X(03)00083-1 CrossRefGoogle Scholar
  57. Shang Y, Yang Z, Li L, Liu D, Liao Q, Wang Y (2003) A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology 54:225–243. doi: 10.1016/S0169-555X(02)00358-6 CrossRefGoogle Scholar
  58. Shang Y, Liu J, Liu D, Zhang L, Xia Y, Lei T (2015) Observation of explosion pits and test results of ejecta above a rock avalanche triggered by the Wenchuan earthquake, China. Geomorphology 231:162–168. doi: 10.1016/j.geomorph.2014.11.025 CrossRefGoogle Scholar
  59. Shang Y, Hyun CU, Park HD, Yang Z, Yuan G (2017) The 102 landslide: human–slope interaction in SE Tibet over a 20-year period. Environ Earth Sci 76:47–62. doi: 10.1007/s12665-016-6365-z CrossRefGoogle Scholar
  60. Suh J, Choi Y, Roh TD, Lee HJ, Park HD (2011) National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea. Environ Earth Sci 63:619–632. doi: 10.1007/s12665-010-0729-6 CrossRefGoogle Scholar
  61. Tarragüel AA, Krol B, Westen CV (2012) Analysing the possible impact of landslides and avalanches on cultural heritage in upper Svaneti, Georgia. J Cult Herit 13:453–461. doi: 10.1016/j.culher.2012.01.012 CrossRefGoogle Scholar
  62. Tropeano D, Turconi L, Rosso M, Cavallo C (2003) The October 15, 2000 debris flow in the Bioley torrent, Fenis, Aosta valley, Italy—damage and processes. In: Rickenmann D, Chen CL (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Proceedings of the third international conference. Millpress, Rotterdam, pp 1037–1048Google Scholar
  63. Vincent C, Thibert E, Harter M, Soruco A, Gilbert A (2015) Volume and frequency of ice avalanches from Taconnaz hanging glacier, French alps. Ann Glaciol 56:17–25. doi: 10.3189/2015AoG70A017 CrossRefGoogle Scholar
  64. Yang Z, Zhang L, Shang Y, Zeng Q, Li L (2006) Assessment of the degree of reinforcement demand (DRD) for rock slope projects—principles and a case example application. Int J Rock Mech Min 43:531–542. doi: 10.1016/j.ijrmms.2005.09.010 CrossRefGoogle Scholar
  65. Yi H, Choi Y, Kim SM, Park HD, Lee SH (2017) Calculating time-specific flux of runoff using DEM considering storm sewer collection systems. J Hydrol Eng 22. doi: 10.1061/(ASCE)HE.1943-5584.0001463
  66. Yongbo F, Adewuyi OI, Chun F (2015) Strength characteristics of soil rock mixture under equal stress and cyclic loading conditions. Geosyst Eng 18:73–77. doi: 10.1080/12269328.2014.1002633 CrossRefGoogle Scholar
  67. Zahiri H, Palamara DR, Flentje P, Brassington GM, Baafi E (2006) A GIS-based weights-of-evidence model for mapping cliff instabilities associated with mine subsidence. Environ Geol 51:377–386. doi: 10.1007/s00254-006-0333-y CrossRefGoogle Scholar
  68. Zitti G, Ancey C, Postacchini M, Brocchini M (2016) Impulse waves generated by snow avalanches: momentum and energy transfer to a water body. J Geophys Res-Earth 121:2399–2423. doi: 10.1002/2016JF003891 CrossRefGoogle Scholar
  69. Zitti G, Ancey C, Postacchini M, Brocchini M (2017) Snow avalanches striking water basins: behaviour of the avalanche’s centre of mass and front. Nat Hazards. doi: 10.1007/s11069-017-2919-y

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Division of Graduate Education for Sustainability of Foundation EnergySeoul National UniversitySeoulSouth Korea
  2. 2.Research Institute of Energy and Resources, Department of Energy Systems EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations