Experimental and laboratory assessment of clogging potential based on adhesion

  • Amir KhabbaziEmail author
  • Mohammad Ghafoori
  • Sadegh Tarigh azali
  • Akbar Cheshomi
Original Article


Mechanized tunneling through clayey formations is threatened by encountering the clogging problem. Adhesion stress, as the tendency between clay and a metal surface, leads to clogging between TBM and excavated materials. Some empirical clogging classification charts were prepared based on the experienced clogging problems. Moreover, experimental attempts have been made to evaluate clogging potential. The relation between available empirical charts with laboratory measurements has not been fully defined. This research was conducted to clarify the relationship between measured adhesion values and to propose empirical charts to support a laboratory assessment method. In this regard, 35 clayey soil samples (assumed to have different levels of clogging potential) were selected using the main existing empirical evaluation charts. The clayey soil samples were tested at two different consistency indexes using the piston pullout test, as a highly qualified adhesion assessment tool. The performance of available classifications was examined by laboratory test results. For this purpose, distribution of the measured adhesion values and levels of clogging potential with classification charts were compared. Among the examined classification charts, one of them showed a high match with adhesion values. Using the resulting relationship, a new experimental method was proposed to evaluate clogging potential using laboratory data.


Clogging Adhesion Tunneling Clayey soils 



Laboratory staff of SCE Institute, Dorin Kashan clay supplying group and Iran Barite clay supplying group was appreciated for support in laboratory tests and soil preparation.


  1. ASTM D422–63(2007)e2 (2007) Standard test methods for particle-size analysis of soils. ASTM International, West Conshohocken Google Scholar
  2. ASTM D4318-10e1 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken Google Scholar
  3. ASTM E691–11 (2011) Standard practice for conducting an Interlaboratory study to determine the precision of a test method. ASTM International, West Conshohocken Google Scholar
  4. ASTM E2282–13 (2013) Standard guide for defining the test result of a test method. ASTM International, West Conshohocken Google Scholar
  5. Atkinson JH, Fookes PG, Miglio BF, Pettifer JS (2003) Destructuring and disaggregation of Mercia mudstone during full-face tunneling. Q J Eng Geol Hydrogeol 36:293–303CrossRefGoogle Scholar
  6. Bhushan B (2003) Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J Vac Sci Technol B 21:2262CrossRefGoogle Scholar
  7. Burbaum U (2009) Adhäsion bindiger Böden an Werkstoffoberflächen von Tunnelvortriebsmaschinen. Technische Universität Darmstadt, September, Institut für Angewandte GeowissenschaftenGoogle Scholar
  8. Burbaum U, Sass I (2016) Physics of adhesion of soils to solid surfaces. Bull Eng Geology Environ:1–9. doi: 10.1007/s10064- 016-0875-5
  9. Burbaum U, Sass I, Breuer B (2010) Verklebungseigenschaften von vera¨nderlich festen Tonsteinen am Beispiel des Stuttgarter Lias & #x03B1. Geotechnik 33(2):175–178Google Scholar
  10. Feinendegen M, Ziegler M, Weh M, Spagnoli G, Stanjek H (2010) A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields. In: Zhao J, Labiouse V, Dudt J-P, Mathier J-F (eds) Rock mechanics in civil and environmental engineering. Taylor Francis Group, London, pp 429–432Google Scholar
  11. Feinendegen M, Ziegler M, Weh M, Spagnoli G (2011) Clogging during EPB- tunnelling: Occurrence, classification and new manipulation methods. Conference: World Tunnel Congress, HelsinkiGoogle Scholar
  12. Fountaine ER (1954) Investigation into the mechanism of soil adhesion. J Soil Sci 2(5):251–263CrossRefGoogle Scholar
  13. Geodata SPA (1995) Review of alternative construction methods and feasibility of proposed methods for constructing Attiko Metro Extension of Line 3 to Egaleo Attiko Metro S.A., GreeceGoogle Scholar
  14. Gill DE, Corthesy R, Leite MH (2005) Determining the minimal number of specimens for laboratory testing of rock properties. Eng Geol 78:29–51CrossRefGoogle Scholar
  15. Heuser M, Spagnoli G, Leroy P, Klitzsch N, Stanjek H (2012) Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving. Bull Eng Geol Environ 71:721–733CrossRefGoogle Scholar
  16. Hollmann FS, Thewes M (2013) Assessment method for clay clogging and disintegration of fines in mechanized tunneling. Tunn Undergr Space Technol 37:96–106CrossRefGoogle Scholar
  17. Hollmann F, Thewes M, Weh M (2014) Einflüsse von Verklebungen auf die Materialförderung von Schildvortrieben (Influence of Clogging on the Muck Transport in Shield Machines). Tunnel No. 3, 2014, 10–19Google Scholar
  18. Jancsecz S, Krause R, Langmaack L (1999) Advantages of soil conditioning in shield tunneling: Experiences of LRTS Izmir. In: Alten et al (eds) Proceedings of the International Congress on Challenges of the 21st Century. Balkema, Rotterdam, pp 865–875Google Scholar
  19. Khabbazi Basmenj A, Ghafoori M, Cheshomi A, Azandariani YK (2016a) Adhesion of clay to metal surfaces; normal and tangential measurement. Geomechanics Eng 10:125–135CrossRefGoogle Scholar
  20. Khabbazi Basmenj A, Mirjavan A, Ghafoori M, Cheshomi A (2016b) Assessment of the adhesion potential of kaolinite and montmorillonite using a pull-out test device. Bull Eng Geol Environ 1–9. doi: 10.1007/s10064-016-0921-3
  21. Khabbazi A, Ghafoori M, Cheshomi A, Karami AY (2014) Design and manufacture of soil-metal adhesion test device and checking repeatability of results. J Iran Assoc Eng Geol, ISSN 2228–5245. (Persian language)Google Scholar
  22. Kooistra A, Verhoef PNW, Broere W, Ngan-Tillard DJM, Vantol AF (1999) Appraisal of stickiness of natural clays from laboratory tests. In: Proceedings of the 25th National Symposium of Engineering Geology in the NetherlandsGoogle Scholar
  23. Marinos PG, Novack M, Benissi M, Panteliadou M, Papouli D, Stoumpos G, Marinos V, Korkaris K (2008) Ground information and selection of TBM for the Thessaloniki metro. Environmental & Engineering Geoscience XIV(1):17–30CrossRefGoogle Scholar
  24. Messerklinger S, Zumsteg R, Puzrin AM (2011) A new pressurized vane shear apparatus. Geotech Test J 34(2) Paper ID GTJ103175 Available online at:
  25. Riek HG (1963) Untersuchungen u¨ber die Adha¨sion zwischen Boden und festen Werkstoffe, Arbeiten der Landwirtschaftlichen Hochschule Hohenheim, Heft 18. Ulmer, StuttgartGoogle Scholar
  26. Sass I, Burbaum U (2009) A method for assessing adhesion of clays to tunneling machines. Bull Eng Geol Environ 68:27–34CrossRefGoogle Scholar
  27. Schachbasian J (1890) Physik des Bodens: Untersuchungen über die Adhäsion und die Reibung der Bodenarten an Holz und Eisen, Mitteilungen aus dem agrikulturphysikalischen Laboratorium und Versuchsfelde der technischen Hochschule in München, Nr. 13, 193–225, HeidelbergGoogle Scholar
  28. Schlick G (1989) Adhäsion im Boden-Werkzeug-System. Veröffentlichungen des Instituts für Maschinenwesen im Baubetrieb, KarlsruheGoogle Scholar
  29. Spagnoli G, Stanjek H, Fernández-Steeger T, Feinendegen M, Azzam R (2009) Modification of mechanical behavior of clays for improving TBM tunnel driving. In: Proceedings of the Underground Space Seminar/Rock Engineering Seminar, Finnish Tunnelling Association and Finnish National Group of ISRM, 217–224Google Scholar
  30. Spagnoli G, Rubinos D, Stanjek H, Fernández Steeger T, Feinendegen M, Azzam R (2011) Undrained shear strength of clays as modified by pH variations. Bull Eng Geol Environ 71:135–148CrossRefGoogle Scholar
  31. Spagnoli G, Feinendegen M, Rubinson D (2012a) Modification of clay adhesion to improve tunnelling excavation. Ground Improvement 166:21–31CrossRefGoogle Scholar
  32. Spagnoli G, Stanjek H, Sridharan A (2012b) Influence of ethanol/ water mixture on the undrained shear strength of pure clays. Bull Eng Geol Environ 71:389–398CrossRefGoogle Scholar
  33. SubbaRao KS, Allam MM, Robinson RG (2002) Anapparatus for evaluating adhesion between soils and solid surfaces. J Test Eval 30:27–36CrossRefGoogle Scholar
  34. Thewes M (1999) Adhäsion von Tonböden beim Tunnelvortrieb mit Flüssigkeitsschilden, Berichte aus Grundbau und Bodenmechanik der Bergischen Universität Gesamthochschule Wuppertal, Fachbereich Bauingenieurwesen, vol 21. Shaker, WuppertalGoogle Scholar
  35. Thewes M, Burger W (2004) Clogging risks for TBM drives in clay. Tunnels and Tunnelling International 36:28–31Google Scholar
  36. Thewes M, Burger W (2005) Clogging of TBM drives in clayidentification and mitigation of risks. In: Erdem, Solak (eds) Underground space use: analysis of the past and lessons for the future. Taylor and Francis, London 2(737–742) Google Scholar
  37. Tong J, Ren L, Chen B, Qaisrant AR (1994) Characteristics of adhesion between soil and solid surfaces. J Terramechanics March 2(31):93–105CrossRefGoogle Scholar
  38. Zimnik R, Baalen RW, Verhoef PNW, Broere W, Ngan-Tillard, DJM (2000) The adherence of clay to steel surfaces. In: Proceedings of GeoEng 2000: An International Conference on Geotechnical and Geological EngineeringGoogle Scholar
  39. Zumsteg A, Puzrin AM (2012) Stickiness and adhesion of conditioned clay pastes. Tunne Undergr Space Technol 31:86–96CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Amir Khabbazi
    • 1
    Email author
  • Mohammad Ghafoori
    • 1
  • Sadegh Tarigh azali
    • 1
  • Akbar Cheshomi
    • 2
  1. 1.Department of Engineering Geology, Faculty of SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Department of Engineering Geology, Faculty of SciencesUniversity of TehranTehranIran

Personalised recommendations