Skip to main content
Log in

Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction

  • Published:
Molecules and Cells

Abstract

Mesenchymal stem cells (MSCs) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether SDF-1 transfection improve MSC viability and paracrine action in infarcted hearts. We found SDF-1-modified MSCs effectively expressed SDF-1 for at least 21days after exposure to hypoxia. The apoptosis of Ad-SDF-1-MSCs was 42% of that seen in Ad-EGFP-MSCs and 53% of untreated MSCs. In the infarcted hearts, the number of DAPI-labeling cells in the Ad-SDF-1-MSC group was 5-fold that in the Ad-EGFP-MSC group. Importantly, expression of antifibrotic factor, HGF, was detected in cultured MSCs, and HGF expression levels were higher in Ad-SDF-MSC-treated hearts, compared with Ad-EGFP-MSC or control hearts. Compared with the control group, Ad-SDF-MSC transplantation significantly decreased the expression of collagens I and III and matrix metalloproteinase 2 and 9, but heart function was improved in d-SDF-MSC-treated animals. In conclusion, SDF-1-modified MSCs enhanced the tolerance of engrafted MSCs to hypoxic injury in vitro and improved their viability in infarcted hearts, thus helping preserve the contractile function and attenuate left ventricle (LV) remodeling, and this may be at least partly mediated by enhanced paracrine signaling from MSCs via antifibrotic factors such as HGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki, M., Morishita, R., Taniyama, Y., Kida, I., Moriguchi, A., Matsumoto, K., Nakamura, T., Kaneda, Y., Higaki, J., and Ogihara, T. (2000). Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium, up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther. 7, 417–427.

    Article  CAS  PubMed  Google Scholar 

  • Barkho, B.Z., Munoz, A.E., Li, X., Li, L., Cunningham, L.A., and Zhao, X. (2008). Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26, 3139–3149.

    Article  CAS  PubMed  Google Scholar 

  • Chen, M., Xie, H.Q., Deng, L., Li, X.Q., Wang, Y., Zhi, W., and Yang, Z.M. (2008). Stromal cell-derived factor-1 promotes bone marrow-derived cells differentiation to cardiomyocyte phenotypes in vitro. Cell Prolif. 41, 336–347.

    Article  CAS  PubMed  Google Scholar 

  • Elmadbouh, I., Haider, HKh., Jiang, S., Idris, N.M., Lu, G., and Ashraf, M. (2007). Ex vivo delivered stromal cell-derived factor-1alpha promotes stem cell homing and induces angiomyogenesis in the infarcted myocardium. J. Mol. Cell Cardiol. 42, 792–803.

    Article  CAS  PubMed  Google Scholar 

  • Fedak, P.W. (2008). Paracrine effects of cell transplantation, modifying ventricular remodeling in the failing heart. Semin. Thorac. Cardiovasc. Surg. 20, 87–93.

    Article  PubMed  Google Scholar 

  • Gnecchi, M., He, H., Noiseux, N., Liang, O.D., Zhang, L., Morello, F., Mu, H., Melo, L.G., Pratt, R.E., Ingwall, J.S., et al. (2006). Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 20, 661–669.

    Article  CAS  PubMed  Google Scholar 

  • Guo, J., Lin, G.S., Bao, C.Y., Hu, Z.M., and Hu, M.Y. (2007). Antiinflammation role for mesenchymal stem cells transplantation in myocardial infarction. Inflammation 30, 97–104.

    Article  CAS  PubMed  Google Scholar 

  • Hiasa, K., Ishibashi, M., Ohtani, K., Inoue, S., Zhao, Q., Kitamoto, S., Sata, M., Ichiki, T., Takeshita, A., and Egashira, K. (2004). Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway, nextgeneration chemokine therapy for therapeutic neovascularization. Circulation 109, 2454–2461.

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama, R., Inagaki, Y., Hong, Y.Y., Kushida, M., Nakao, S., Niioka, M., Watanabe, T., Okano, H., Matsuzaki, Y., Shiota, G., et al. (2007). Bone marrow-derived cells express matrix metal loproteinases and contribute to regression of liver fibrosis in mice. Hepatology 45, 213–222.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Yu, S.P., Fraser, J.L., Lu, Z., Ogle, M.E., Wang, J.A., and Wei, L. (2008). Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg. 135, 799–808.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki, Y., Higashiyama, R., and Okazaki, I. (2007). Treatment strategy for liver fibrosis through recruitment and differentiation of bone marrow stem/progenitor cells. Hepatol. Res. 37, 991–993.

    Article  PubMed  Google Scholar 

  • Janowska-Wieczorek, A., Marquez, L.A., Dobrowsky, A., Ratajczak, M.Z., and Cabuhat, M.L. (2000). Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp. Hematol. 28, 1274–1285.

    Article  CAS  PubMed  Google Scholar 

  • Kinnaird, T., Stabile, E., Burnett, M.S., Lee, C.W., Barr, S., and Fuchs, S. (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678–685.

    Article  CAS  PubMed  Google Scholar 

  • Koch, K.C., Schaefer, W.M., Liehn, E.A., Rammos, C., Mueller, D., Schroeder, J., Dimassi, T., Stopinski, T., and Weber, C. (2006). Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1alpha on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Res. Cardiol. 101, 69–77.

    Article  CAS  PubMed  Google Scholar 

  • Kollet, O., Shivtiel, S., Chen, Y.Q., Suriawinata, J., Thung, S.N., Dabeva, M.D., Kahn, J., Spiegel, A., Dar, A., Samira, S., et al. (2003). HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J. Clin. Invest. 112, 160–169.

    CAS  PubMed  Google Scholar 

  • Kortesidis, A., Zannettino, A., Isenmann, S., Shi, S., Lapidot, T., and Gronthos, S. (2005). Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 105, 3793–3801.

    Article  CAS  PubMed  Google Scholar 

  • Li, R.K., Mickle, D.A., Weisel, R.D., Rao, V., and Jia, Z.Q. (2001). Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann. Thorac. Surg. 72, 1957–1963.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Zhang, Y., Li, Y., Yu, B., Xu, Y., Zhao, S., and Guan, Z. (2008). Mesenchymal stem cell transplantation attenuates cardiac fibrosis associated with isoproterenol-induced global heart failure. Transpl. Int. 21, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Ma, N., Ong, L.L., Nesselmann, C., Klopsch, C., Ladilov, Y., Furlani, D., Piechaczek, C., Moebius, J.M., Lützow, K., et al. (2008). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25, 2118–2127.

    Article  Google Scholar 

  • Liu, X.H., Bai, C.G., Xu, Z.Y., Huang, S.D., Yuan, Y., Gong, D.J., and Zhang, J.R. (2008). Therapeutic potential of angiogenin modified mesenchymal stem cells, angiogenin improves mesenchymal stem cells survival under hypoxia and enhances vasculogenesis in myocardial infarction. Microvasc. Res. 76, 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Mangi, A.A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J.S., and Dzau, V.J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195–1201.

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa, S., Sawa, Y., Fukuda, K., Hisaka, Y., Taketani, S., Memon, I.A., and Matsuda, H. (2006). Angiogenic gene cell therapy using suicide gene system regulates the effect of angiogenesis in infarcted rat heart. Transplantation 81, 902–907.

    Article  CAS  PubMed  Google Scholar 

  • Morita, H., Khanal, S., Rastogi, S., Suzuki, G., Imai, M., Todor, A., Sharov, V.G., Goldstein, S., O’Neill, T.P., and Sabbah, H.N. (2006). Selective matrix metalloproteinase inhibition attenuates progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Am. J. Physiol. Heart Circ. Physiol. 290, H2522–H2527.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, T., Mizuno, S., Matsumoto, K., Sawa, Y., Matsuda, H., and Nakamura, T. (2000). Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J. Clin. Invest. 106, 1511–1519.

    Article  CAS  PubMed  Google Scholar 

  • Novotny, N.M., Ray, R., Markel, T.A., Crisostomo, P.R., Wang, M., Wang, Y., and Meldrum, D.R. (2008). Stem cell therapy in myocardial repair and remodeling. J. Am. Coll. Surg. 207, 423–434.

    Article  PubMed  Google Scholar 

  • Ohnishi, S., Sumiyoshi, H., Kitamura, S., and Nagaya, N. (2007). Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 581, 3961–3966.

    Article  CAS  PubMed  Google Scholar 

  • Pasha, Z., Wang, Y., Sheikh, R., Zhang, D., Zhao, T., and Ashraf, M. (2008). Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc. Res. 77, 134–142.

    Article  CAS  PubMed  Google Scholar 

  • Petit, I., Goichberg, P., Spiegel, A., Peled, A., Brodie, C., Seger, R., Nagler, A., Alon, R., and Lapidot, T. (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J. Clin. Invest 115, 168–176.

    CAS  PubMed  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–173.

    Article  CAS  PubMed  Google Scholar 

  • Pons, J., Huang, Y., Arakawa-Hoyt, J., Washko, D., Takagawa, J., Ye, J., Grossman, W., and Su, H. (2008). VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochem. Biophys. Res. Commun. 376, 419–422.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt, D., Sigusch, H.H., Hensse, J., Tyagi, S.C., Körfer, R., and Figulla, H.R. (2002). Cardiac remodelling in end stage heart failure, upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 88, 525–530.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz de Almodovar, C., Luttun, A., and Carmeliet, P. (2006). An SDF-1 trap for myeloid cells stimulates angiogenesis. Cell 124, 18–21.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, A., Fish, J.E., White, M.D., Yu, S., Smyth, J.W., Shaw, R.M., DiMaio, J.M., and Srivastava, D. (2008). Stromal cellderived factor-1alpha is cardioprotective after myocardial infarction. Circulation 117, 2224–2231.

    Article  CAS  PubMed  Google Scholar 

  • Schober, A., Karshovska, E., Zernecke, A., and Weber, C. (2006). SDF-1alpha-mediated tissue repair by stem cells, a promising tool in cardiovascular medicine? Trends Cardiovasc. Med. 16, 103–108.

    Article  CAS  PubMed  Google Scholar 

  • Schuh, A., Liehn, E.A., Sasse, A., Hristov, M., Sobota, R., Kelm, M., Merx, M.W., and Weber, C. (2008). Transplantation of endothelial progenitor cells improves neovascularization and left ventricular function after myocardial infarction in a rat model. Basic Res. Cardiol. 103, 69–77.

    Article  PubMed  Google Scholar 

  • Schuleri, K.H., Boyle, A.J., and Hare, J.M. (2007). Mesenchymal stem cells for cardiac regenerative therapy. Handb. Exp. Pharmacol. 180, 195–218.

    Article  CAS  PubMed  Google Scholar 

  • Shao, H., Tan, Y., Eton, D., Yang, Z., Uberti, M.G., Li, S., Schulick, A., and Yu, H. (2008). Statin and stromal cell derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells 26, 1376–1384.

    Article  CAS  PubMed  Google Scholar 

  • Son, B.R., Marquez-Curtis, L.A., Kucia, M., Wysoczynski, M., Turner, A.R., Ratajczak, J., Ratajczak, M.Z., and Janowska-Wieczorek, A. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24, 1254–1264.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Cui, M., Wang, Z., Feng, X., Mao, J., Chen, P., Kangtao, M., Chen, F., and Zhou, C. (2007). Mesenchymal stem cells modified with angiopoietin-1 improve remodeling in a rat model of acute myocardial infarction. Biochem. Biophys. Res. Commun. 357, 779–784.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J.M., Xie, Q.Y., Pan, G.D., Wang, J.N., and Wang, M.J. (2006). Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur. J. Cardiothorac. Surg. 30, 353–361.

    Article  PubMed  Google Scholar 

  • Tang, J., Wang, J., Yang, J., and Kong, X. (2008). Adenovirusmediated stromal cell-derived-factor-1alpha gene transfer induces cardiac preservation after infarction via angiogenesis of CD133+ stem cells and anti-apoptosis. Interact. Cardiovasc. Thorac. Surg. 7, 767–770.

    Article  PubMed  Google Scholar 

  • Tang, J., Wang, J., Yang, J., Kong, X., Zheng, F., Guo, L., Zhang, L., and Huang, Y. (2009a). Mesenchymal stem cells overexpressing SDF-1 promote angiogenesis and improve heart function in experimental myocardial infarction in rats. Eur. J. Cardiothorac. Surg. 36, 644–650.

    Article  PubMed  Google Scholar 

  • Tang, J., Wang, J., Song, H., Huang, Y., Yang, J., Kong, X., Guo, L., Zheng, F., and Zhang, L. (2009b). Adenovirus-mediated stromal cell-derived factor-1 alpha gene transfer improves cardiac structure and function after experimental myocardial infarction through angiogenic and antifibrotic actions. Mol. Biol. Rep. [10.1007/s11033-009-9642-z]

  • Taniyama, Y., Morishita, R., Aoki, M., Hiraoka, K., Yamasaki, K., Hashiya, N., Matsumoto, K., Nakamura, T., Kaneda, Y., and Ogihara, T. (2002). Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Hypertension 40, 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, H., Nakamura, T., Matsumoto, K., Sawa, Y., Matsuda, H., and Nakamura, T. (2001). A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc. Res. 51, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Ahmad, N., Wani, M.A., and Ashraf, M. (2004). Hepatocyte growth factor prevents ventricular remodeling and dysfunction in mice via Akt pathway and angiogenesis. J. Mol. Cell. Cardiol. 37, 1041–1052.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Xu, Z., Xu, Y., and Cui, G. (2005). Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron. Artery Dis. 16, 245–255.

    Article  PubMed  Google Scholar 

  • Yamaguchi, J., Kusano, K.F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., Bosch-Marce, M., Masuda, H., Losordo, D.W., Isner, J.M., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107, 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z.J., Ma, D.C., Wang, W., Xu, S.L., Zhang, Y.Q., Chen, B., Zhou, F., Zhu, T.B., Wang, L.S., Xu, Z.Q., et al. (2006). Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction. Gene Ther. 13, 1564–1568.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Mal, N., Kiedrowski, M., Chacko, M., Askari, A.T., and Popovic, Z.B. (2007). SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J. 21, 3197–3207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Tang or Jianing Wang.

About this article

Cite this article

Tang, J., Wang, J., Guo, L. et al. Mesenchymal stem cells modified with stromal cell-derived factor 1α improve cardiac remodeling via paracrine activation of hepatocyte growth factor in a rat model of myocardial infarction. Mol Cells 29, 9–19 (2010). https://doi.org/10.1007/s10059-010-0001-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-010-0001-7

Keywords

Navigation