Advertisement

The European Physical Journal D

, Volume 8, Issue 1, pp 93–99 | Cite as

Temperature-dependent ionization potential of sodium clusters

  • J. AkolaEmail author
  • A. Rytkönen
  • H. Häkkinen
  • M. Manninen
Article

Abstract

The ionization potential of sodium clusters (8 ≤ N ≤ 55) at a finite temperature is studied using density functional theory and ab initio molecular dynamics. The threshold regions of the photoionization efficiency curves are deduced from the integrated IP distributions, which are obtained from the energy eigenvalues of the highest occupied Kohn-Sham states during molecular dynamics by applying a theoretically well-defined shift. The calculated ionization potentials are directly compared to the experimental values. The energetically best geometry of Na55 is found to be a slightly distorted icosahedron.

PACS

36.40.Cg Electronic and magnetic properties of clusters 36.40.Mr Spectroscopy and geometrical structure of clusters 71.24.+q Electronic structure of clusters and nanoparticles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    W.A. Saunders, Ph.D. thesis, University of California, 1986.Google Scholar
  3. 3.
    M. Kappes, M. Schär, U. Röthlisberger, C. Yeretzian, E. Schumacher, Chem. Phys. Lett. 143, 251 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    J. Persson, Ph.D. thesis, University of California, 1991; M.L. Homer, J.L. Persson, E.C. Honea, R. Whetten, Z. Phys. D 22, 441 (1991).Google Scholar
  5. 5.
    C. Yannouleas, U. Landman, Phys. Rev. B 51, 1902 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    M. Koskinen, M. Manninen, Phys. Rev. B 54, 14796 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    O. Frank, J.M. Rost, Chem. Phys. Lett. 271, 367 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    M. Madjet, P.A. Hervieux, contribution to ISSPIC9.Google Scholar
  9. 9.
    B. Wästberg, A. Rosén, Z. Phys. D 18, 267 (1991).ADSCrossRefGoogle Scholar
  10. 10.
    C. Yannouleas, U. Landman, Phys. Rev Lett. 78, 1424 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    J. Akola, H. Häkkinen, M. Manninen, Eur. Phys. J. D (in print).Google Scholar
  12. 12.
    T. Reiners, C. Ellert, M. Schmidt, H. Haberland, Phys. Rev. Lett. 74, 1558 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    R.N. Barnett, U. Landman, Phys. Rev. B 48, 2081 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980); S.H. Vosko, L. Wilk, J. Phys. C 15, 2139 (1982).ADSCrossRefGoogle Scholar
  15. 15.
    L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    D.J. Tozer, N.C. Handy, J. Chem. Phys. 108, 2545 (1998); D.J. Tozer, N.C. Handy, J. Chem. Phys. 109, 10180 (1998).ADSCrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, Int. J. Quantum. Chem. 57 (1996).Google Scholar
  21. 21.
    J. Akola, H. Häkkinen, M. Manninen, Phys. Rev. B 58, 3601 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, L.-S. Wang, Phys. Rev. B 60, 11297 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    X. Li, H. Wu, X.-B. Wang, L.-S. Wang, Phys. Rev Lett. 81, 1909 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    H.G. Limberger, T.P. Martin, J. Chem. Phys. 90, 2979 (1989).ADSCrossRefGoogle Scholar
  25. 25.
    A. Rytkönen, H. Häkkinen, M. Manninen, Phys. Rev. Lett. 80, 3940 (1998); A. Rytkönen, H. Häkkinen, M. Manninen, Eur. Phys. J. D (in print).ADSCrossRefGoogle Scholar
  26. 26.
    C. Bréchignac, P. Cahuzac, Chem. Phys. Lett. 117 365 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    S. Kümmel, P.-G. Reinhard, M. Brack, contribution to ISSPIC9.Google Scholar
  28. 28.
    I. Hamamoto, B. Mottelson, H. Xie, X.Z. Zhang, Z. Phys. D 21, 163 (1991).ADSCrossRefGoogle Scholar
  29. 29.
    S. Frauendorf, V.V. Pashkevich, Z. Phys. D 26, S98 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    S.M. Reimann, M. Brack, K. Hansen, Z. Phys. D 28, 235 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    S.M. Reimann, S. Frauendorf, M. Brack, Z. Phys. D 34, 125 (1995).ADSCrossRefGoogle Scholar
  32. 32.
    T.P. Martin, S. Bjørnholm, J. Borggreen, C. Bréchignac, P. Cahuzac, K. Hansen, J. Pedersen, Chem. Phys. Lett. 186, 53 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    T.P. Martin, U. Näher, H. Schaber, U. Zimmermann, J. Chem. Phys. 100, 2322 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica Springer-Verlag 2000

Authors and Affiliations

  • J. Akola
    • 1
  • A. Rytkönen
    • 1
  • H. Häkkinen
    • 2
  • M. Manninen
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  2. 2.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations