Advertisement

The European Physical Journal D

, Volume 8, Issue 1, pp 9–12 | Cite as

A theory of electromagnetism with uniquely defined potential and covariant conserved spin

  • A. B. van OostenEmail author
Article

Abstract

The Lagrangian ½є0c2µAνµAν is shown to yield a non-gauge-invariant theory of electromagnetism. The potential is uniquely determined by the inhomogeneous wave equation and boundary conditions at infinity. The Lorenz condition and minimal coupling follow from charge conservation. Electromagnetic spin is conserved and a spin operator is proposed without sacrificing covariance. Covariant quantisation is carried out without redefining the metric. It is a valid alternative to the standard approach since it makes the same experimental predictions.

PACS

03.50.De Classical electromagnetism, Maxwell equations 42.50.-p Quantum optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The convention gµν = diag(−1, 1, 1, 1) is adopted.Google Scholar
  2. 2.
    F.J. Belinfante, Physica 7, 449 (1940).ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Fermi, Rend. Lincei 9, 881 (1929); W. Pauli, W. Heisenberg, Z. Phys. 59, 168 (1930).Google Scholar
  4. 4.
    A.I. Achieser, W.B. Berestezki, Quantenelektrodynamik (Teubner, Leipzig, 1962).Google Scholar
  5. 5.
    J.M. Jauch, F. Rohrlich, The theory of photons and electrons, 2nd edn. (Springer Verlag, 1976).Google Scholar
  6. 6.
    N.N. Bogolyubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980).zbMATHGoogle Scholar
  7. 7.
    F. Mandl, G. Shaw, Quantum Field Theory (Wiley, Chichester, 1984).zbMATHGoogle Scholar
  8. 8.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms (Wiley, New York, 1989).Google Scholar
  9. 9.
    J. Schwinger, Theoretical Physics (IAEA, Trieste, 1962).Google Scholar
  10. 10.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1979).zbMATHGoogle Scholar
  11. 11.
    W.K.H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, 1956).zbMATHGoogle Scholar
  12. 12.
    This is clear for two point charges moving at right angles in a common plane. Due to the magnetic interaction one has for the Lorentz force F 12F 21.Google Scholar
  13. 13.
    The absence of radiation effects is assumed.Google Scholar
  14. 14.
    S.J. van Enk, G. Nienhuis, Europhys. Lett. 25, 497 (1994); J. Mod. Opt. 41, 963 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    R.A. Beth, Phys. Rev. 48, 471 (1935); ibid. 50, 115 (1936).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica Springer-Verlag 2000

Authors and Affiliations

  1. 1.Laboratoire de Physique Quantique, IRSAMCUniversité Paul SabatierToulouseFrance

Personalised recommendations