Advertisement

VPS53 gene is associated with a new phenotype of complicated hereditary spastic paraparesis

  • Moran Hausman-KedemEmail author
  • Shay Ben-Shachar
  • Shay Menascu
  • Karen Geva
  • Liora Sagie
  • Aviva Fattal-Valevski
Original Article

Abstract

Hereditary spastic paraparesis (HSP) is a progressive neurodegenerative disorder, characterized by progressive lower limb weakness and spasticity. Multiple genes are associated with both the pure and complicated HSP types. Our study is aimed at seeking for novel genetic basis of HSP in a family with two affected siblings. Genetic analysis using whole exome sequencing was conducted in a family quartet with two female siblings, who presented with complicated HSP featuring slowly progressive paraparesis, mild-moderate intellectual disability, normal head circumference (HC), and normal magnetic resonance imaging (MRI). A homozygous pathogenic variant was identified in both siblings in the VPS53 gene (c.2084A>G: c.2084A>G, p.Gln695Arg). This gene acts as a component of the Golgi-associated retrograde protein (GARP) complex that is involved, among others, in intracellular cholesterol transport and sphingolipid homeostasis in lysosomes and was previously associated with progressive cerebello-cerebral atrophy (PCCA) type 2. This is the first description of the VPS53 gene as a cause of autosomal recessive complicated HSP. Lysosomal dysfunction as a result of impaired cholesterol trafficking can explain the neurodegenerative processes responsible for the HSP. Our finding expands the phenotype of VPS53-related disease and warrants the addition of VPS53 analysis to the genetic investigation in patients with autosomal recessive HSP. The exact role of GARP complex in neurodegenerative processes should be further elucidated.

Keywords

Hereditary spastic paraparesis Hereditary spastic paraplegia VPS53 PCCA type 2 

Abbreviations

HSP

Hereditary spastic paraparesis

PCCA

Progressive cerebello-cerebral atrophy

GARP

Golgi-associated retrograde protein

HC

Head circumference

MRI

Magnetic resonance imaging

MRS

Magnetic resonance spectroscopy

ID

Intellectual disability

ADHD

Attention deficit hyperactivity disorder

CMA

Chromosomal microarray analysis

WES

Whole exome sequencing

Notes

Acknowledgments

Irina Opincariu is thanked for editorial assistance. We would like to express our sincere gratitude to the patients and their family.

Financial disclosures

The study received the Bircher-Benner Grant for Preventative Medicine from the Sackler Faculty of Medicine, Tel Aviv University.

Compliance with ethical standards

All study protocols were reviewed and approved by the Institutional Review Board at the Tel Aviv Sourasky Medical Center.

References

  1. 1.
    McMonagle P, Webb S, Hutchinson M (2002) The prevalence of “pure” autosomal dominant hereditary spastic paraparesis in the island of Ireland. J Neurol Neurosurg Psychiatry 72(1):43–46CrossRefGoogle Scholar
  2. 2.
    Sedel F, Fontaine B, Saudubray JM, Lyon-Caen O (2007) Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: a diagnostic approach. J Inherit Metab Dis 30(6):855–864CrossRefGoogle Scholar
  3. 3.
    Harding AE (1981) Hereditary “pure” spastic paraplegia: a clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry 44:871–883CrossRefGoogle Scholar
  4. 4.
    McDermott CJ, White K, Bushby K, Shaw PJ (2000) Hereditary spastic paraparesis: a review of new developments. J Neurol Neurosurg Psychiatry 69:150–160CrossRefGoogle Scholar
  5. 5.
    Depienne C, Stevanin G, Brice A, Durr A (2007) Hereditary spastic paraplegias: an update. Curr Opin Neurol 20:674–680CrossRefGoogle Scholar
  6. 6.
    Appleton RE, Farrell K, Dunn HG (1991) ‘Pure’ and ‘complicated’ forms of hereditary spastic paraplegia presenting in childhood. Dev Med Child Neurol 33(4):304–312CrossRefGoogle Scholar
  7. 7.
    Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155CrossRefGoogle Scholar
  8. 8.
    da Graça FF, de Rezende TJR, Vasconcellos LFR, Pedroso JL, Barsottini OGP, França MC Jr (2019) Neuroimaging in hereditary spastic paraplegias: current use and future perspectives. Front Neurol 9:1117CrossRefGoogle Scholar
  9. 9.
    Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A (2014) Hereditary spastic paraplegia: clinical- genetic characteristics and evolving molecular mechanisms. Exp Neurol 61C:518–539CrossRefGoogle Scholar
  10. 10.
    Tesson C, Koht J, Stevanin G (2015) Delving into the complexity of hereditary spastic paraplegias: how unexpected phenotypes and inheritance modes are revolutionizing their nosology. Hum Genet 134(6):511–538CrossRefGoogle Scholar
  11. 11.
    Souza PVS, Bortholin T, Dias RB, Chieia MAT, Burlin S, Naylor FGM et al (2017) New genetic causes for complex hereditary spastic paraplegia. J Neurol Sci 379:283–292CrossRefGoogle Scholar
  12. 12.
    D’Amore A, Tessa A, Casali C, Dotti MT, Filla A, Silvestri G et al (2018) Next generation molecular diagnosis of hereditary spastic paraplegias: an Italian cross-sectional study. Front Neurol 9:981CrossRefGoogle Scholar
  13. 13.
    Lynch DS, Koutsis G, Tucci A, Panas M, Baklou M, Breza M et al (2016) Hereditary spastic paraplegia in Greece: characterization of a previously unexplored population using next-generation sequencing. Eur J Hum Genet 24:857–863 10.1038CrossRefGoogle Scholar
  14. 14.
    Lu C, Li LX, Dong HL, Wei Q, Liu ZJ, Ni W et al (2018 Jul) Targeted next-generation sequencing improves diagnosis of hereditary spastic paraplegia in Chinese patients. J Mol Med (Berl) 96(7):701–712CrossRefGoogle Scholar
  15. 15.
    Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, Chelban V, Manole A, Hamed SA, Haridy NA, Federoff M, Preza E, Hughes D, Pittman A, Jaunmuktane Z, Brandner S, Xiromerisiou G, Wiethoff S, Schottlaender L, Proukakis C, Morris H, Warner T, Bhatia KP, Korlipara LVP, Singleton AB, Hardy J, Wood NW, Lewis PA, Houlden H (2016) Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 139(Pt 7):1904–1918CrossRefGoogle Scholar
  16. 16.
    Burguez D, Polese-Bonatto M, Scudeiro LAJ, Björkhem I, Schöls L, Jardim LB, Matte U, Saraiva-Pereira ML, Siebert M, Saute JAM (2017) Clinical and molecular characterization of hereditary spastic paraplegias: a next-generation sequencing panel approach. J Neurol Sci 383:18–25CrossRefGoogle Scholar
  17. 17.
    Schüle R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S, Klimpe S, Gallenmüller C, Kurzwelly D, Henkel D, Rimmele F, Stolze H, Kohl Z, Kassubek J, Klockgether T, Vielhaber S, Kamm C, Klopstock T, Bauer P, Züchner S, Liepelt-Scarfone I, Schöls L (2016) Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients. Ann Neurol 79:646–658CrossRefGoogle Scholar
  18. 18.
    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033Google Scholar
  19. 19.
    1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Abecasis GR et al (2015) A global reference for human genetic variation. Nature. 526(7571):68–74CrossRefGoogle Scholar
  20. 20.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature. 536(7616):285–291.  https://doi.org/10.1038/nature19057
  21. 21.
    Ren Z, La Carpia F, Halvorsen M, Wang Q, McSweeney KM et al (2017) Annotating pathogenic non-coding variants in genic regions. Nat Commun 8(1):236CrossRefGoogle Scholar
  22. 22.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424CrossRefGoogle Scholar
  23. 23.
    Feinstein M, Flusser H, Lerman-Sagie T, Ben-Zeev B, Lev D, Agamy O, Cohen I, Kadir R, Sivan S, Leshinsky-Silver E, Markus B, Birk OS (2014) VPS53 mutations cause progressive cerebello-cerebral atrophy type 2 (PCCA2). J Med Genet 51:303–308CrossRefGoogle Scholar
  24. 24.
    Ben-Zeev B, Hoffman C, Lev D, Watemberg N, Malinger G, Brand N, Lerman-Sagie T (2003) Progressive cerebellocerebral atrophy: a new syndrome with microcephaly, mental retardation, and spastic quadriplegia. J Med Genet 40(8):e96CrossRefGoogle Scholar
  25. 25.
    Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R, Hoffmann C, Leshinsky-Silver E, Flusser H, Sivan S, Söll D, Lerman-Sagie T, Birk OS (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87(4):538–544CrossRefGoogle Scholar
  26. 26.
    Knowles MR, Leigh MW, Carson JL, Davis SD, Dell SD, Ferkol TW et al (2012) Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 67(5):433–441CrossRefGoogle Scholar
  27. 27.
    Bonifacino JS, Hierro A (2011 Mar) Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol 21(3):159–167CrossRefGoogle Scholar
  28. 28.
    Schindler C, Chen Y, Pu J, Guo X, Bonifacino JS (2015) EARP, a multisubunit tethering complex involved in endocytic recycling. Nat Cell Biol 17(5):639–650CrossRefGoogle Scholar
  29. 29.
    Pérez-Victoria FJ, Bonifacino JS (2009) Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-Golgi network. Mol Cell Biol 29:5251–5263CrossRefGoogle Scholar
  30. 30.
    Fröhlich F, Petit C, Kory N, Christiano R, Hannibal-Bach HK, Graham M, Liu X, Ejsing CS, Farese RV Jr, Walther TC (2015) The GARP complex is required for cellular sphingolipid homeostasis. eLife 4:e08712CrossRefGoogle Scholar
  31. 31.
    Wei J, Zhang Y-Y, Luo J, Wang J-Q, Zhou Y-X, Miao H-H et al (2017) The GARP complex is involved in intracellular cholesterol transport via targeting NPC2 to lysosomes. Cell Rep 19:2823–2835CrossRefGoogle Scholar
  32. 32.
    Vasan N, Hutagalung A, Novick P, Reinisch K (2010) Structure of a C-terminal fragment of its Vps53 subunit suggests similarity of Golgi-associated retrograde protein (GARP) complex to a family of tethering complexes. Proc Natl Acad Sci U S A 107:14176–14181CrossRefGoogle Scholar
  33. 33.
    Bruyn RP (1992) The neuropathology of hereditary spastic paraparesis. Clin Neurol Neurosurg 94s:s16–s18CrossRefGoogle Scholar
  34. 34.
    Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, Abdellateef M, Rosti B, Scott E, Mansour L, Masri A, Kayserili H, al-Aama JY, Abdel-Salam GMH, Karminejad A, Kara M, Kara B, Bozorgmehri B, Ben-Omran T, Mojahedi F, Mahmoud IGED, Bouslam N, Bouhouche A, Benomar A, Hanein S, Raymond L, Forlani S, Mascaro M, Selim L, Shehata N, al-Allawi N, Bindu PS, Azam M, Gunel M, Caglayan A, Bilguvar K, Tolun A, Issa MY, Schroth J, Spencer EG, Rosti RO, Akizu N, Vaux KK, Johansen A, Koh AA, Megahed H, Durr A, Brice A, Stevanin G, Gabriel SB, Ideker T, Gleeson JG (2014) Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 343(6170):506–511CrossRefGoogle Scholar
  35. 35.
    Chang J, Lee S, Blackstone C (2014) Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J Clin Invest 124(12):5249–5262CrossRefGoogle Scholar
  36. 36.
    Boukhris A, Schule R, Loureiro JL, Lourenço CM, Mundwiller E, Gonzalez MA, Charles P, Gauthier J, Rekik I, Acosta Lebrigio RF, Gaussen M, Speziani F, Ferbert A, Feki I, Caballero-Oteyza A, Dionne-Laporte A, Amri M, Noreau A, Forlani S, Cruz VT, Mochel F, Coutinho P, Dion P, Mhiri C, Schols L, Pouget J, Darios F, Rouleau GA, Marques W Jr, Brice A, Durr A, Zuchner S, Stevanin G (2013 Jul 11) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 93(1):118–123CrossRefGoogle Scholar
  37. 37.
    Dodge JC (2017) Lipid involvement in neurodegenerative diseases of the motor system: insights from lysosomal storage diseases. Front Mol Neurosci 10:356CrossRefGoogle Scholar
  38. 38.
    Hirst J, Irving C, Borner GH (2013) Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic. 14(2):153–164CrossRefGoogle Scholar
  39. 39.
    Perez-Victoria FJ, Abascal-Palacios G, Tascón I, Kajava A, Magadán JG, Pioro EP et al (2010) Structural basis for the wobbler mouse neurodegenerative disorder caused by mutation in the Vps54 subunit of the GARP complex. Proc Natl Acad Sci U S A 107:12860–12865CrossRefGoogle Scholar
  40. 40.
    Moser JM, Bigini P, Schmitt-John T (2013) The wobbler mouse, an ALS animal model. Mol Gen Genomics 288:207–229CrossRefGoogle Scholar
  41. 41.
    Denora P, Smets K, Zolfanelli K, Ceuterick-de Groote C, Casali C, Deconinck T et al (2016) Motor neuron degeneration in spastic paraplegia 11 mimics amyotrophic lateral sclerosis lesions. Brain. 139:1723–1734Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Pediatric Neurology Institute, Dana-Dwek Children’s HospitalTel Aviv Sourasky Medical CenterTel AvivIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Genetic InstituteTel Aviv Sourasky Medical CenterTel AvivIsrael
  4. 4.Multiple Sclerosis CenterSheba Medical CenterTel HaShomerIsrael

Personalised recommendations