Advertisement

Overlap of polymicrogyria, hydrocephalus, and Joubert syndrome in a family with novel truncating mutations in ADGRG1/GPR56 and KIAA0556

  • Edmund S. Cauley
  • Ahlam Hamed
  • Inaam N. Mohamed
  • Maha Elseed
  • Samantha Martinez
  • Ashraf Yahia
  • Fatima Abozar
  • Rayan Abubakr
  • Mahmoud Koko
  • Liena Elsayed
  • Xianhua Piao
  • Mustafa A. Salih
  • M. Chiara ManziniEmail author
Original Article

Abstract

Genetic mutations associated with brain malformations can lead to a spectrum of severity and it is often difficult to determine whether there are additional pathogenic variants contributing to the phenotype. Here, we present a family affected by a severe brain malformation including bilateral polymicrogyria, hydrocephalus, patchy white matter signal changes, and cerebellar and pontine hypoplasia with elongated cerebellar peduncles leading to the molar tooth sign. While the malformation is reminiscent of bilateral frontoparietal polymicrogyria (BFPP), the phenotype is more severe than previously reported and also includes features of Joubert syndrome (JBTS). Via exome sequencing, we identified homozygous truncating mutations in both ADGRG1/GPR56 and KIAA0556, which are known to cause BFPP and mild brain-specific JBTS, respectively. This study shows how two independent mutations can interact leading to complex brain malformations.

Keywords

Polymicrogyria Hydrocephalus Joubert syndrome Lissencephaly 

Notes

Acknowledgements

The authors would like to thank the family for participating in our studies. Adam Wong at the GWU high-performance computing cluster Colonial One and Dr. Annapurna Poduri at Boston Children’s Hospital for initial input on the brain imaging.

Funding information

This research was funded by a March of Dimes Research Grant to M.C.M. M.A.S and was supported by the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia, via research group project number RGP-VPP-301.

References

  1. 1.
    Desikan RS, Barkovich AJ (2016) Malformations of cortical development. Ann Neurol 80:797–810.  https://doi.org/10.1002/ana.24793 CrossRefGoogle Scholar
  2. 2.
    Davis EE, Katsanis N (2012) The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev 22:290–303.  https://doi.org/10.1016/j.gde.2012.04.006 CrossRefGoogle Scholar
  3. 3.
    Lee JE, Gleeson JG (2011) Cilia in the nervous system: linking cilia function and neurodevelopmental disorders. Curr Opin Neurol 24:98–105.  https://doi.org/10.1097/WCO.0b013e3283444d05 CrossRefGoogle Scholar
  4. 4.
    Tory K, Lacoste T, Burglen L, Moriniere V, Boddaert N, Macher MA, Llanas B, Nivet H, Bensman A, Niaudet P, Antignac C, Salomon R, Saunier S (2007) High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol 18:1566–1575.  https://doi.org/10.1681/ASN.2006101164 CrossRefGoogle Scholar
  5. 5.
    Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A, Lancaster MA, Schlossman AM, Otto EA, Leitges M, Gröne HJ, Lopez I, Gudiseva HV, O'Toole JF, Vallespin E, Ayyagari R, Ayuso C, Cremers FPM, den Hollander AI, Koenekoop RK, Dallapiccola B, Ghiggeri GM, Hildebrandt F, Valente EM, Williams DS, Gleeson JG (2010) AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 42:175–180.  https://doi.org/10.1038/ng.519 CrossRefGoogle Scholar
  6. 6.
    Phelps IG, Dempsey JC, Grout ME, Isabella CR, Tully HM, Doherty D, Bachmann-Gagescu R (2018) Interpreting the clinical significance of combined variants in multiple recessive disease genes: systematic investigation of Joubert syndrome yields little support for oligogenicity. Genet Med 20:223–233.  https://doi.org/10.1038/gim.2017.94 CrossRefGoogle Scholar
  7. 7.
    Piao X, Chang BS, Bodell A, Woods K, BenZeev B, Topcu M, Guerrini R, Goldberg-Stern H, Sztriha L, Dobyns WB, Barkovich AJ, Walsh CA (2005) Genotype-phenotype analysis of human frontoparietal polymicrogyria syndromes. Ann Neurol 58:680–687.  https://doi.org/10.1002/ana.20616 CrossRefGoogle Scholar
  8. 8.
    Bahi-Buisson N, Poirier K, Boddaert N, Fallet-Bianco C, Specchio N, Bertini E, Caglayan O, Lascelles K, Elie C, Rambaud J, Baulac M, An I, Dias P, des Portes V, Moutard ML, Soufflet C, el Maleh M, Beldjord C, Villard L, Chelly J (2010) GPR56-related bilateral frontoparietal polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133:3194–3209.  https://doi.org/10.1093/brain/awq259 CrossRefGoogle Scholar
  9. 9.
    Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Déscarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036.  https://doi.org/10.1126/science.1092780 CrossRefGoogle Scholar
  10. 10.
    Luo R, Jeong S-J, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930.  https://doi.org/10.1073/pnas.1104821108 CrossRefGoogle Scholar
  11. 11.
    Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121.  https://doi.org/10.1038/ncomms7121 CrossRefGoogle Scholar
  12. 12.
    Li S, Jin Z, Koirala S, Bu L, Xu L, Hynes RO, Walsh CA, Corfas G, Piao X (2008) GPR56 regulates pial basement membrane integrity and cortical lamination. J Neurosci 28:5817–5826.  https://doi.org/10.1523/JNEUROSCI.0853-08.2008 CrossRefGoogle Scholar
  13. 13.
    Sanders AAWM, de Vrieze E, Alazami AM, Alzahrani F, Malarkey EB, Sorusch N, Tebbe L, Kuhns S, van Dam TJP, Alhashem A, Tabarki B, Lu Q, Lambacher NJ, Kennedy JE, Bowie RV, Hetterschijt L, van Beersum S, van Reeuwijk J, Boldt K, Kremer H, Kesterson RA, Monies D, Abouelhoda M, Roepman R, Huynen MH, Ueffing M, Russell RB, Wolfrum U, Yoder BK, van Wijk E, Alkuraya FS, Blacque OE (2015) KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome. Genome Biol 16:293.  https://doi.org/10.1186/s13059-015-0858-z CrossRefGoogle Scholar
  14. 14.
    Roosing S, Rosti RO, Rosti B, de Vrieze E, Silhavy JL, van Wijk E, Wakeling E, Gleeson JG (2016) Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying Joubert syndrome. Hum Genet 135:919–921.  https://doi.org/10.1007/s00439-016-1689-z CrossRefGoogle Scholar
  15. 15.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595.  https://doi.org/10.1093/bioinformatics/btp698 CrossRefGoogle Scholar
  16. 16.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303.  https://doi.org/10.1101/gr.107524.110 CrossRefGoogle Scholar
  17. 17.
    Van der Auwera GA, Carneiro MO, Hartl C, et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033. doi:  https://doi.org/10.1002/0471250953.bi1110s43
  18. 18.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. 38:e164. doi:  https://doi.org/10.1093/nar/gkq603
  19. 19.
    Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536:285–291.  https://doi.org/10.1038/nature19057 CrossRefGoogle Scholar
  20. 20.
    Scott EM, Halees A, Itan Y et al (2016) Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery. Nat Genet 48:1071–1076.  https://doi.org/10.1038/ng.3592 CrossRefGoogle Scholar
  21. 21.
    Wood E, Rosenbaum P (2000) The gross motor function classification system for cerebral palsy: a study of reliability and stability over time. Dev Med Child Neurol 42:292–296CrossRefGoogle Scholar
  22. 22.
    Rollins JD, Collins JS, Holden KR (2010) United States head circumference growth reference charts: birth to 21 years. J Pediatr 156:907–913.e2.  https://doi.org/10.1016/j.jpeds.2010.01.009 CrossRefGoogle Scholar
  23. 23.
    Paavola KJ, Stephenson JR, Ritter SL, et al (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. 286:28914–28921. doi:  https://doi.org/10.1074/jbc.M111.247973
  24. 24.
    Salzman GS, Ackerman SD, Ding C, Koide A, Leon K, Luo R, Stoveken HM, Fernandez CG, Tall GG, Piao X, Monk KR, Koide S, Araç D (2016) Structural basis for regulation of GPR56/ADGRG1 by its alternatively spliced extracellular domains. Neuron 91:1292–1304.  https://doi.org/10.1016/j.neuron.2016.08.022 CrossRefGoogle Scholar
  25. 25.
    Kim J-E, Han JM, Park CR, Shin KJ, Ahn C, Seong JY, Hwang JI (2010) Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. J Cancer Res Clin Oncol 136:47–53.  https://doi.org/10.1007/s00432-009-0635-z CrossRefGoogle Scholar
  26. 26.
    Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM, Mogha A, Cöster M, Simon KU, Rothemund S, Monk KR, Schöneberg T (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026.  https://doi.org/10.1016/j.celrep.2014.11.036 CrossRefGoogle Scholar
  27. 27.
    Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112:6194–6199.  https://doi.org/10.1073/pnas.1421785112 CrossRefGoogle Scholar
  28. 28.
    Vandervore L, Stouffs K, Tanyalçin I, Vanderhasselt T, Roelens F, Holder-Espinasse M, Jørgensen A, Pepin MG, Petit F, Khau van Kien P, Bahi-Buisson N, Lissens W, Gheldof A, Byers PH, Jansen AC (2017) Bi-allelic variants in COL3A1 encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. J Med Genet 54:432–440.  https://doi.org/10.1136/jmedgenet-2016-104421 CrossRefGoogle Scholar
  29. 29.
    Horn D, Siebert E, Seidel U, Rost I, Mayer K, Abou Jamra R, Mitter D, Kornak U (2017) Biallelic COL3A1 mutations result in a clinical spectrum of specific structural brain anomalies and connective tissue abnormalities. Am J Med Genet 173:2534–2538.  https://doi.org/10.1002/ajmg.a.38345 CrossRefGoogle Scholar
  30. 30.
    Jeong S-J, Li S, Luo R, Strokes N, Piao X (2012) Loss of Col3a1, the gene for Ehlers-Danlos syndrome type IV, results in neocortical dyslamination. PLoS One 7:e29767.  https://doi.org/10.1371/journal.pone.0029767 CrossRefGoogle Scholar
  31. 31.
    Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Gα12/13 and RhoA. Nat Commun 6:6122.  https://doi.org/10.1038/ncomms7122 CrossRefGoogle Scholar
  32. 32.
    Giera S, Luo R, Ying Y, Ackerman SD, Jeong SJ, Stoveken HM, Folts CJ, Welsh CA, Tall GG, Stevens B, Monk KR, Piao X (2018) Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. Elife 7:6122.  https://doi.org/10.7554/eLife.33385 CrossRefGoogle Scholar
  33. 33.
    Van Strien ME, Baron W, Bakker ENTP et al (2011) Tissue transglutaminase activity is involved in the differentiation of oligodendrocyte precursor cells into myelin-forming oligodendrocytes during CNS remyelination. Glia 59:1622–1634.  https://doi.org/10.1002/glia.21204 CrossRefGoogle Scholar
  34. 34.
    Santos-Silva R, Passas A, Rocha C, Figueiredo R, Mendes-Ribeiro J, Fernandes S, Biskup S, Leão M (2015) Bilateral frontoparietal polymicrogyria: a novel GPR56 mutation and an unusual phenotype. Neuropediatrics 46:134–138.  https://doi.org/10.1055/s-0034-1399754 CrossRefGoogle Scholar
  35. 35.
    Quattrocchi CC, Zanni G, Napolitano A, Longo D, Cordelli DM, Barresi S, Randisi F, Valente EM, Verdolotti T, Genovese E, Specchio N, Vitiello G, Spiegel R, Bertini E, Bernardi B (2013) Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics 14:77–83.  https://doi.org/10.1007/s10048-012-0352-7 CrossRefGoogle Scholar
  36. 36.
    Lindstrand A, Frangakis S, Carvalho CMB, Richardson EB, McFadden KA, Willer JR, Pehlivan D, Liu P, Pediaditakis IL, Sabo A, Lewis RA, Banin E, Lupski JR, Davis EE, Katsanis N (2016) Copy-number variation contributes to the mutational load of Bardet-Biedl syndrome. Am J Hum Genet 99:318–336.  https://doi.org/10.1016/j.ajhg.2015.04.023 CrossRefGoogle Scholar
  37. 37.
    Nardello R, Fontana A, Antona V, Beninati A, Mangano GD, Stallone MC, Mangano S (2018) A novel mutation of WDR62 gene associated with severe phenotype including infantile spasm, microcephaly, and intellectual disability. Brain Dev 40:58–64.  https://doi.org/10.1016/j.braindev.2017.07.003 CrossRefGoogle Scholar
  38. 38.
    Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Sotoudeh S, Jazayeri A, Guy A, Lovell PA, Liu L, Kariminejad A, McGrath JA, Zeinali S, Uitto J (2018) Next generation sequencing identifies double homozygous mutations in two distinct genes (EXPH5 and COL17A1) in a patient with concomitant simplex and junctional epidermolysis bullosa. Hum Mutat 39:1349–1354.  https://doi.org/10.1002/humu.23592 CrossRefGoogle Scholar
  39. 39.
    Wang H-H, Feng Y, Li H-B, Wu H, Mei LY, Wang XW, Jiang L, He CF (2017) Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV. Int J Pediatr Otorhinolaryngol 92:17–20.  https://doi.org/10.1016/j.ijporl.2016.10.028 CrossRefGoogle Scholar
  40. 40.
    Van Goethem G, Löfgren A, Dermaut B, et al (2003) Digenic progressive external ophthalmoplegia in a sporadic patient: recessive mutations in POLG and C10orf2/twinkle. Hum Mutat 22:175–176. doi:  https://doi.org/10.1002/humu.10246

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Edmund S. Cauley
    • 1
  • Ahlam Hamed
    • 2
  • Inaam N. Mohamed
    • 2
  • Maha Elseed
    • 2
  • Samantha Martinez
    • 1
  • Ashraf Yahia
    • 3
    • 4
    • 5
  • Fatima Abozar
    • 3
  • Rayan Abubakr
    • 6
  • Mahmoud Koko
    • 7
  • Liena Elsayed
    • 3
  • Xianhua Piao
    • 8
  • Mustafa A. Salih
    • 9
  • M. Chiara Manzini
    • 1
    Email author
  1. 1.Institute for Neuroscience, Department of Pharmacology and PhysiologyThe George Washington University School of Medicine and Health SciencesWashingtonUSA
  2. 2.Department of Pediatrics and Child Health, Faculty of MedicineUniversity of KhartoumKhartoumSudan
  3. 3.Department of Biochemistry, Faculty of MedicineUniversity of KhartoumKhartoumSudan
  4. 4.Department of Biochemistry, Faculty of MedicineNational UniversityKhartoumSudan
  5. 5.Institut du Cerveau et de la Moelle épinièreINSERM U1127, CNRS UMR7225, Sorbonne Universités UMR_S1127ParisFrance
  6. 6.Institute of Endemic DiseasesUniversity of KhartoumKhartoumSudan
  7. 7.Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  8. 8.Division of Newborn Medicine, Department of Pediatrics, Boston Children’s HospitalHarvard Medical SchoolBostonUSA
  9. 9.Division of Pediatric Neurology, College of MedicineKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations