Advertisement

Clinical and molecular studies in two new cases of ARSACS

  • Ivana Ricca
  • Federica Morani
  • Giacomo Maria Bacci
  • Claudia Nesti
  • Roberto Caputo
  • Alessandra Tessa
  • Filippo Maria SantorelliEmail author
Short Communication
  • 37 Downloads

Abstract

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodevelopmental disorder characterized by the association of spastic ataxia and sensorimotor neuropathy. Additional features include retinal changes and cognitive impairment. Today, next-generation sequencing (NGS) techniques are allowing the rapid identification of a growing number of missense variants, even in less typical forms of the disease, but the pathogenic significance of these changes is often difficult to establish on the basis of classic bioinformatics criteria and genotype/phenotype correlations. Herein, we describe two novel cases of missense mutations in SACS. The two individuals were identified during the genetic screening of a large cohort of patients with inherited ataxias. We discuss how protein studies and specialized ophthalmological investigations could represent useful pointers for the interpretation of genetic data. Combination of these tools with NGS for rapid genotyping might help to identify new true ARSACS cases.

Keywords

ARSACS Sacsin Genotype-phenotype correlation Mitochondrial network Retinal myelinated fibers 

Notes

Funding information

This study was partially supported by the Foundation de l’Ataxie Charlevoix-Saguenay (www.arsacs.com) to FM, the Italian Ministry of Health-Ricerca Finalizzata RF-2016-02361610 (to FMS), and the E-RARE-3 Joint Transnational Call grant “Preparing therapies for autosomal recessive ataxias” (PREPARE) (MoH; project 3398 to FMS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10048_2019_564_Fig3_ESM.png (203 kb)
Supplementary Figure S1

Sequence electropherograms showing the heterozygous SACS variations (below) in the patients compared with their controls (above). The arrows indicate the heterozygous nucleotides in P1 and P2. The family trees are also depicted. Squares, males; circles, females; filled symbols, affected individuals; M and m indicate SACS mutations. (PNG 202 kb)

10048_2019_564_MOESM1_ESM.tif (343 kb)
High Resolution Image (TIF 342 kb)

References

  1. 1.
    Yamamoto Y, Hiraoka K, Araki M, Nagano S, Shimazaki H, Takiyama Y, Sakoda S (2005) Novel compound heterozygous mutations in sacsin-related ataxia. J Neurol Sci 239:101–104.  https://doi.org/10.1016/j.jns.2005.08.005 CrossRefGoogle Scholar
  2. 2.
    Takiyama Y (2006) Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuropathology 26:368–375CrossRefGoogle Scholar
  3. 3.
    Synofzik M, Soehn AS, Gburek-Augustat J, Schicks J, Karle KN, Schüle R, Haack TB, Schöning M, Biskup S, Rudnik-Schöneborn S, Senderek J, Hoffmann KT, MacLeod P, Schwarz J, Bender B, Krüger S, Kreuz F, Bauer P, Schöls L (2013) Autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS): expanding the genetic, clinical and imaging spectrum. Orphanet J Rare Dis 8:41.  https://doi.org/10.1186/1750-1172-8-41 CrossRefGoogle Scholar
  4. 4.
    Vermeer S, Meijer RPP, Pijl BJ, Timmermans J, Cruysberg JRM, Bos MM, Schelhaas HJ, van de Warrenburg BPC, Knoers NVAM, Scheffer H, Kremer B (2008) ARSACS in the Dutch population: a frequent cause of early-onset cerebellar ataxia. Neurogenetics 9:207–214.  https://doi.org/10.1007/s10048-008-0131-7 CrossRefGoogle Scholar
  5. 5.
    Baets J, Deconinck T, Smets K, Goossens D, van den Bergh P, Dahan K, Schmedding E, Santens P, Rasic VM, van Damme P, Robberecht W, de Meirleir L, Michielsens B, del-Favero J, Jordanova A, de Jonghe P (2010) Mutations in SACS cause atypical and late-onset forms of ARSACS. Neurology 75:1181–1188.  https://doi.org/10.1212/WNL.0b013e3181f4d86c CrossRefGoogle Scholar
  6. 6.
    Engert JC, Bérubé P, Mercier J, Doré C, Lepage P, Ge B, Bouchard JP, Mathieu J, Melançon SB, Schalling M, Lander ES, Morgan K, Hudson TJ, Richter A (2000) ARSACS, a spastic ataxia common in northeastern Québec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24:120–125CrossRefGoogle Scholar
  7. 7.
    Galatolo D, Tessa A, Filla A, Santorelli FM (2018) Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis. Neurogenetics 19:1–8.  https://doi.org/10.1007/s10048-017-0532-6 CrossRefGoogle Scholar
  8. 8.
    Rivera-Muñoz EA, Milko LV, Harrison SM, Azzariti DR, Kurtz CL, Lee K, Mester JL, Weaver MA, Currey E, Craigen W, Eng C, Funke B, Hegde M, Hershberger RE, Mao R, Steiner RD, Vincent LM, Martin CL, Plon SE, Ramos E, Rehm HL, Watson M, Berg JS (2018) ClinGen variant curation expert panel experiences and standardized processes for disease and gene-level specification of the ACMG/AMP guidelines for sequence variant interpretation. Hum Mutat 39:1614–1622.  https://doi.org/10.1002/humu.23645 CrossRefGoogle Scholar
  9. 9.
    Romano A, Tessa A, Barca A, Fattori F, Fulvia de Leva M, Terracciano A, Storelli C, Santorelli FM, Verri T (2013) Comparative analysis and functional mapping of SACS mutations reveal novel insights into sacsin repeated architecture. Hum Mutat 34:525–537.  https://doi.org/10.1002/humu.22269 CrossRefGoogle Scholar
  10. 10.
    Martin M-H, Bouchard J-P, Sylvain M, St-Onge O, Truchon S (2007) Autosomal recessive spastic ataxia of Charlevoix-Saguenay: a report of MR imaging in 5 patients. AJNR Am J Neuroradiol 28:1606–1608.  https://doi.org/10.3174/ajnr.A0603 CrossRefGoogle Scholar
  11. 11.
    Girard M, Lariviere R, Parfitt DA, Deane EC, Gaudet R, Nossova N, Blondeau F, Prenosil G, Vermeulen EGM, Duchen MR, Richter A, Shoubridge EA, Gehring K, McKinney RA, Brais B, Chapple JP, McPherson PS (2012) Mitochondrial dysfunction and Purkinje cell loss in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). Proc Natl Acad Sci 109:1661–1666.  https://doi.org/10.1073/pnas.1113166109 CrossRefGoogle Scholar
  12. 12.
    Pilliod J, Moutton S, Lavie J, Maurat E, Hubert C, Bellance N, Anheim M, Forlani S, Mochel F, N'Guyen K, Thauvin-Robinet C, Verny C, Milea D, Lesca G, Koenig M, Rodriguez D, Houcinat N, van-Gils J, Durand CM, Guichet A, Barth M, Bonneau D, Convers P, Maillart E, Guyant-Marechal L, Hannequin D, Fromager G, Afenjar A, Chantot-Bastaraud S, Valence S, Charles P, Berquin P, Rooryck C, Bouron J, Brice A, Lacombe D, Rossignol R, Stevanin G, Benard G, Burglen L, Durr A, Goizet C, Coupry I (2015) New practical definitions for the diagnosis of autosomal recessive spastic ataxia of Charlevoix-Saguenay. Ann Neurol 78:871–886.  https://doi.org/10.1002/ana.24509 CrossRefGoogle Scholar
  13. 13.
    Tessa A, Battini R, Rubegni A, Storti E, Marini C, Galatolo D, Pasquariello R, Santorelli FM (2016) Identification of mutations in AP4S1/SPG52 through next generation sequencing in three families. Eur J Neurol 23:1580–1587.  https://doi.org/10.1111/ene.13085 CrossRefGoogle Scholar
  14. 14.
    Dagda RK, Cherra SJ, Kulich SM et al (2009) Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 284:13843–13855.  https://doi.org/10.1074/jbc.M808515200 CrossRefGoogle Scholar
  15. 15.
    Santambrogio P, Dusi S, Guaraldo M, Rotundo LI, Broccoli V, Garavaglia B, Tiranti V, Levi S (2015) Mitochondrial iron and energetic dysfunction distinguish fibroblasts and induced neurons from pantothenate kinase-associated neurodegeneration patients. Neurobiol Dis 81:144–153.  https://doi.org/10.1016/j.nbd.2015.02.030 CrossRefGoogle Scholar
  16. 16.
    Sferra A, Fattori F, Rizza T, Flex E, Bellacchio E, Bruselles A, Petrini S, Cecchetti S, Teson M, Restaldi F, Ciolfi A, Santorelli FM, Zanni G, Barresi S, Castiglioni C, Tartaglia M, Bertini E (2018) Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. Hum Mol Genet 27:1892–1904.  https://doi.org/10.1093/hmg/ddy096 CrossRefGoogle Scholar
  17. 17.
    Parkinson MH, Bartmann AP, Clayton LMS, Nethisinghe S, Pfundt R, Chapple JP, Reilly MM, Manji H, Wood NJ, Bremner F, Giunti P (2018) Optical coherence tomography in autosomal recessive spastic ataxia of Charlevoix-Saguenay. Brain 141:989–999.  https://doi.org/10.1093/brain/awy028 CrossRefGoogle Scholar
  18. 18.
    Garcia-Martin E, Pablo LE, Gazulla J, Polo V, Ferreras A, Larrosa JM (2013) Retinal nerve fibre layer thickness in ARSACS: myelination or hypertrophy? Br J Ophthalmol 97:238–241.  https://doi.org/10.1136/bjophthalmol-2012-302309 CrossRefGoogle Scholar
  19. 19.
    Vingolo EM, Di Fabio R, Salvatore S et al (2011) Myelinated retinal fibers in autosomal recessive spastic ataxia of Charlevoix-Saguenay. Eur J Neurol 18:1187–1190.  https://doi.org/10.1111/j.1468-1331.2010.03335.x CrossRefGoogle Scholar
  20. 20.
    Shah CT, Ward TS, Matsumoto JA, Shildkrot Y (2016) Foveal hypoplasia in autosomal recessive spastic ataxia of Charlevoix-Saguenay. J AAPOS Off Publ Am Assoc Pediatr Ophthalmol Strabismus 20:81–83.  https://doi.org/10.1016/j.jaapos.2015.10.007 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ivana Ricca
    • 1
  • Federica Morani
    • 1
  • Giacomo Maria Bacci
    • 2
  • Claudia Nesti
    • 1
  • Roberto Caputo
    • 2
  • Alessandra Tessa
    • 1
  • Filippo Maria Santorelli
    • 1
    Email author
  1. 1.Molecular Medicine, IRCCS Fondazione Stella MarisPisaItaly
  2. 2.Pediatric Ophthalmology Unit, Meyer Children’s HospitalUniversity of FlorenceFlorenceItaly

Personalised recommendations