Advertisement

Mitochondrial ribosomal protein PTCD3 mutations cause oxidative phosphorylation defects with Leigh syndrome

  • Nurun Nahar Borna
  • Yoshihito Kishita
  • Masakazu Kohda
  • Sze Chern Lim
  • Masaru Shimura
  • Yibo Wu
  • Kaoru Mogushi
  • Yukiko Yatsuka
  • Hiroko Harashima
  • Yuichiro Hisatomi
  • Takuya Fushimi
  • Keiko Ichimoto
  • Kei Murayama
  • Akira Ohtake
  • Yasushi OkazakiEmail author
Original Article

Abstract

Pentatricopeptide repeat domain proteins are a large family of RNA-binding proteins involved in mitochondrial RNA editing, stability, and translation. Mitochondrial translation machinery defects are an expanding group of genetic diseases in humans. We describe a patient who presented with low birth weight, mental retardation, and optic atrophy. Brain MRI showed abnormal bilateral signals at the basal ganglia and brainstem, and the patient was diagnosed as Leigh syndrome. Exome sequencing revealed two potentially loss-of-function variants [c.415-2A>G, and c.1747_1748insCT (p.Phe583Serfs*3)] in PTCD3 (also known as MRPS39). PTCD3, a member of the pentatricopeptide repeat domain protein family, is a component of the small mitoribosomal subunit. The patient had marked decreases in mitochondrial complex I and IV levels and activities, oxygen consumption and ATP biosynthesis, and generalized mitochondrial translation defects in fibroblasts. Quantitative proteomic analysis revealed decreased levels of the small mitoribosomal subunits. Complementation experiments rescued oxidative phosphorylation complex I and IV levels and activities, ATP biosynthesis, and MT-RNR1 rRNA transcript level, providing functional validation of the pathogenicity of identified variants. This is the first report of an association of PTCD3 mutations with Leigh syndrome along with combined oxidative phosphorylation deficiencies caused by defects in the mitochondrial translation machinery.

Keywords

Leigh syndrome Oxidative phosphorylation PTCD3 Small mitoribosomal subunit Mitochondrial translation 

Notes

Acknowledgements

We thank Dr. Hiroyuki Miyoshi of Keio University and RIKEN BioResource Center for the CS-CA-MCS plasmid. The authors are thankful to the Biomedical Research Center, Saitama Medical University for supporting to do the experiment. The authors thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author contributions

NNB, YK, and YO designed the study. Drafting of the manuscript was performed by NNB. NNB, SCL, MS, YW, YY, and HH acquired data. NNB, YK, MK, and KM analyzed data. TF and KI provided the patient’s clinical information. YH is the attending physician of the patient. YO, AO, and KM gave critical comments. YO led the project.

Funding

This work was supported in part by a grant of the “Practical Research Project for Rare/Intractable Diseases” (Fund ID: 18ek0109273s0102 and 18ek0109177s0103) and “Program for an Integrated Database of Clinical and Genomic Information” (Fund ID: 18kk0205002s9903) from Japan Agency for Medical Research and Development (AMED) (http://www.amed.go.jp/en/), and also MEXT-Supported Program for the Private University Research Branding Project. NNB is a recipient of the Uehara Memorial Foundation Research Fellowship. SCL is a JSPS International Research Fellow.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Study approval

The study was approved by the ethics committee of Juntendo University and was performed after receiving written informed consent from the parents of the patient.

Supplementary material

10048_2018_561_MOESM1_ESM.pdf (136 kb)
ESM 1 (PDF 136 kb)
10048_2018_561_MOESM2_ESM.xlsx (17 kb)
ESM 2 (XLSX 16 kb)
10048_2018_561_MOESM3_ESM.xlsx (10 kb)
ESM 3 (XLSX 10 kb)
10048_2018_561_MOESM4_ESM.xlsx (14 kb)
ESM 4 (XLSX 13 kb)

References

  1. 1.
    Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160.  https://doi.org/10.1146/annurev-biochem-060815-014402 CrossRefPubMedGoogle Scholar
  2. 2.
    Boczonadi V, Horvath R (2014) Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 48:77–84.  https://doi.org/10.1016/j.biocel.2013.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rackham O, Mercer TR, Filipovska A (2012) The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. Wiley Interdiscip Rev RNA 3(5):675–695.  https://doi.org/10.1002/wrna.1128 CrossRefPubMedGoogle Scholar
  4. 4.
    Hallberg BM, Larsson NG (2014) Making proteins in the powerhouse. Cell Metab 20(2):226–240.  https://doi.org/10.1016/j.cmet.2014.07.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Aubourg S, Boudet N, Kreis M, Lecharny A (2000) In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol 42(4):603–613.  https://doi.org/10.1023/a:1006352315928 CrossRefPubMedGoogle Scholar
  6. 6.
    Small ID, Peeters N (2000) The PPR motif—a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(2):45–47CrossRefGoogle Scholar
  7. 7.
    Perks KL, Rossetti G, Kuznetsova I, Hughes LA, Ermer JA, Ferreira N, Busch JD, Rudler DL, Spahr H, Schondorf T, Shearwood AJ, Viola HM, Siira SJ, Hool LC, Milenkovic D, Larsson NG, Rackham O, Filipovska A (2018) PTCD1 is required for 16S rRNA maturation complex stability and mitochondrial ribosome assembly. Cell Rep 23(1):127–142.  https://doi.org/10.1016/j.celrep.2018.03.033 CrossRefPubMedGoogle Scholar
  8. 8.
    Filipovska A, Rackham O (2013) Pentatricopeptide repeats: modular blocks for building RNA-binding proteins. RNA Biol 10(9):1426–1432.  https://doi.org/10.4161/rna.24769 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Davies SM, Rackham O, Shearwood AM, Hamilton KL, Narsai R, Whelan J, Filipovska A (2009) Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Lett 583(12):1853–1858.  https://doi.org/10.1016/j.febslet.2009.04.048 CrossRefPubMedGoogle Scholar
  10. 10.
    Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V (2015) The structure of the human mitochondrial ribosome. Science 348(6230):95–98.  https://doi.org/10.1126/science.aaa1193 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kaushal PS, Sharma MR, Booth TM, Haque EM, Tung CS, Sanbonmatsu KY, Spremulli LL, Agrawal RK (2014) Cryo-EM structure of the small subunit of the mammalian mitochondrial ribosome. Proc Natl Acad Sci U S A 111(20):7284–7289.  https://doi.org/10.1073/pnas.1401657111 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N (2015) Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348(6232):303–308.  https://doi.org/10.1126/science.aaa3872 CrossRefPubMedGoogle Scholar
  13. 13.
    Kummer E, Leibundgut M, Rackham O, Lee RG, Boehringer D, Filipovska A, Ban N (2018) Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 560(7717):263–267.  https://doi.org/10.1038/s41586-018-0373-y CrossRefPubMedGoogle Scholar
  14. 14.
    Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 14(3):216–221.  https://doi.org/10.1136/jnnp.14.3.216 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lopez LC, Schuelke M, Quinzii CM, Kanki T, Rodenburg RJ, Naini A, Dimauro S, Hirano M (2006) Leigh syndrome with nephropathy and CoQ10 deficiency due to decaprenyl diphosphate synthase subunit 2 (PDSS2) mutations. Am J Hum Genet 79(6):1125–1129.  https://doi.org/10.1086/510023 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ruhoy IS, Saneto RP (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7:221–234.  https://doi.org/10.2147/TACG.S46176 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lake NJ, Compton AG, Rahman S, Thorburn DR (2016) Leigh syndrome: one disorder, more than 75 monogenic causes. Ann Neurol 79(2):190–203.  https://doi.org/10.1002/ana.24551 CrossRefPubMedGoogle Scholar
  18. 18.
    Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y (2016) A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet 12(1):e1005679.  https://doi.org/10.1371/journal.pgen.1005679 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. In: Pon L, Schon E (eds) Methods in cell biology, vol 80. Academic Press, pp 93–119.  https://doi.org/10.1016/S0091-679X(06)80004-X
  20. 20.
    McKenzie M, Lazarou M, Ryan MT (2009) Chapter 18 analysis of respiratory chain complex assembly with radiolabeled nuclear- and mitochondrial-encoded subunits. In: Allison W, Scheffler I (eds) Mitochondrial function, part a: mitochondrial electron transport complexes and reactive oxygen species. Methods in enzymology. Elsevier, pp 321–339.  https://doi.org/10.1016/s0076-6879(08)04418-2
  21. 21.
    Wu Y, Williams EG, Dubuis S, Mottis A, Jovaisaite V, Houten SM, Argmann CA, Faridi P, Wolski W, Kutalik Z, Zamboni N, Auwerx J, Aebersold R (2014) Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158(6):1415–1430.  https://doi.org/10.1016/j.cell.2014.07.039 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bruderer R, Bernhardt OM, Gandhi T, Miladinovic SM, Cheng LY, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5):1400–1410.  https://doi.org/10.1074/mcp.M114.044305 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7(5):655–667.  https://doi.org/10.1002/pmic.200600625 CrossRefPubMedGoogle Scholar
  24. 24.
    Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M, Brusniak MY, Hengartner MO, Aebersold R (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8(5):430–435.  https://doi.org/10.1038/nmeth.1584 CrossRefPubMedGoogle Scholar
  25. 25.
    Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44(D1):D447–D456.  https://doi.org/10.1093/nar/gkv1145 CrossRefPubMedGoogle Scholar
  26. 26.
    Calvo SE, Clauser KR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44(D1):D1251–D1257.  https://doi.org/10.1093/nar/gkv1003 CrossRefPubMedGoogle Scholar
  27. 27.
    Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291.  https://doi.org/10.1038/nature19057 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, Yamaguchi-Kabata Y, Yokozawa J, Danjoh I, Saito S, Sato Y, Mimori T, Tsuda K, Saito R, Pan X, Nishikawa S, Ito S, Kuroki Y, Tanabe O, Fuse N et al (2015) Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun 6:8018.  https://doi.org/10.1038/ncomms9018 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Giron CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR et al (2018) Ensembl 2018. Nucleic Acids Res 46(D1):D754–D761.  https://doi.org/10.1093/nar/gkx1098 CrossRefPubMedGoogle Scholar
  30. 30.
    Gamazon ER, Segre AV, van de Bunt M, Wen X, Xi HS, Hormozdiari F, Ongen H, Konkashbaev A, Derks EM, Aguet F, Quan J, Consortium GT, Nicolae DL, Eskin E, Kellis M, Getz G, McCarthy MI, Dermitzakis ET, Cox NJ, Ardlie KG (2018) Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet 50(7):956–967.  https://doi.org/10.1038/s41588-018-0154-4 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32(4):529–539.  https://doi.org/10.1016/j.molcel.2008.10.021 CrossRefPubMedGoogle Scholar
  32. 32.
    Gardeitchik T, Mohamed M, Ruzzenente B, Karall D, Guerrero-Castillo S, Dalloyaux D, van den Brand M, van Kraaij S, van Asbeck E, Assouline Z, Rio M, de Lonlay P, Scholl-Buergi S, Wolthuis D, Hoischen A, Rodenburg RJ, Sperl W, Urban Z, Brandt U, Mayr JA et al (2018) Bi-allelic mutations in the mitochondrial ribosomal protein MRPS2 cause sensorineural hearing loss, hypoglycemia, and multiple OXPHOS complex deficiencies. Am J Hum Genet 102(4):685–695.  https://doi.org/10.1016/j.ajhg.2018.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Marroquin LD, Hynes J, Dykens JA, Jamieson JD, Will Y (2007) Circumventing the Crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol Sci 97(2):539–547.  https://doi.org/10.1093/toxsci/kfm052 CrossRefPubMedGoogle Scholar
  34. 34.
    Rossignol R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA (2004) Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res 64(3):985–993.  https://doi.org/10.1158/0008-5472.Can-03-1101 CrossRefPubMedGoogle Scholar
  35. 35.
    Robinson BH, Petrova-Benedict R, Buncic JR, Wallace DC (1992) Nonviability of cells with oxidative defects in galactose medium: a screening test for affected patient fibroblasts. Biochem Med Metab Biol 48(2):122–126.  https://doi.org/10.1016/0885-4505(92)90056-5 CrossRefPubMedGoogle Scholar
  36. 36.
    Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368.  https://doi.org/10.1093/nar/gkw937 CrossRefPubMedGoogle Scholar
  37. 37.
    Rackham O, Shearwood A-MJ, Mercer TR, Davies SMK, Mattick JS, Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17(12):2085–2093.  https://doi.org/10.1261/rna.029405.111 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Davies SM, Lopez Sanchez MI, Narsai R, Shearwood AM, Razif MF, Small ID, Whelan J, Rackham O, Filipovska A (2012) MRPS27 is a pentatricopeptide repeat domain protein required for the translation of mitochondrially encoded proteins. FEBS Lett 586(20):3555–3561.  https://doi.org/10.1016/j.febslet.2012.07.043 CrossRefPubMedGoogle Scholar
  39. 39.
    Christian BE, Spremulli LL (2012) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819(9–10):1035–1054.  https://doi.org/10.1016/j.bbagrm.2011.11.009 CrossRefPubMedGoogle Scholar
  40. 40.
    Ott M, Amunts A, Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 85:77–101.  https://doi.org/10.1146/annurev-biochem-060815-014334 CrossRefPubMedGoogle Scholar
  41. 41.
    Emdadul Haque M, Grasso D, Miller C, Spremulli LL, Saada A (2008) The effect of mutated mitochondrial ribosomal proteins S16 and S22 on the assembly of the small and large ribosomal subunits in human mitochondria. Mitochondrion 8(3):254–261.  https://doi.org/10.1016/j.mito.2008.04.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, Mountford HS, Pulman J, Zangarelli C, Rio M, Boddaert N, Assouline Z, Sherpa MD, Schadt EE, Houten SM, Byrnes J, McCormick EM, Zolkipli-Cunningham Z, Haude K, Zhang Z et al (2017) Biallelic mutations in MRPS34 Lead to instability of the small mitoribosomal subunit and Leigh syndrome. Am J Hum Genet 101(2):239–254.  https://doi.org/10.1016/j.ajhg.2017.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Metodiev MD, Lesko N, Park CB, Camara Y, Shi Y, Wibom R, Hultenby K, Gustafsson CM, Larsson NG (2009) Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab 9(4):386–397.  https://doi.org/10.1016/j.cmet.2009.03.001 CrossRefPubMedGoogle Scholar
  44. 44.
    Foster LJ, de Hoog CL, Zhang Y, Zhang Y, Xie X, Mootha VK, Mann M (2006) A mammalian organelle map by protein correlation profiling. Cell 125(1):187–199.  https://doi.org/10.1016/j.cell.2006.03.022 CrossRefPubMedGoogle Scholar
  45. 45.
    Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70(2):200–214CrossRefGoogle Scholar
  46. 46.
    Gandhi S, Abramov AY (2012) Mechanism of oxidative stress in neurodegeneration. Oxidative Med Cell Longev 2012:428010–428011.  https://doi.org/10.1155/2012/428010 CrossRefGoogle Scholar
  47. 47.
    Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580CrossRefGoogle Scholar
  48. 48.
    Ganemo A, Jagell S, Vahlquist A (2009) Sjogren-larsson syndrome: a study of clinical symptoms and dermatological treatment in 34 Swedish patients. Acta Derm Venereol 89(1):68–73.  https://doi.org/10.2340/00015555-0561 CrossRefPubMedGoogle Scholar
  49. 49.
    Liu S, Wang Z, Liang J, Chen N, OuYang H, Zeng W, Chen L, Xie X, Jiang J (2017) Two novel mutations in the glycine decarboxylase gene in a boy with classic nonketotic hyperglycinemia: case report. Arch Argent Pediatr 115(4):e225–e229.  https://doi.org/10.5546/aap.2017.eng.e225 CrossRefPubMedGoogle Scholar
  50. 50.
    Lim SC, Hroudova J, Van Bergen NJ, Lopez Sanchez MI, Trounce IA, McKenzie M (2016) Loss of mitochondrial DNA-encoded protein ND1 results in disruption of complex I biogenesis during early stages of assembly. FASEB J 30(6):2236–2248.  https://doi.org/10.1096/fj.201500137R CrossRefPubMedGoogle Scholar
  51. 51.
    Savoiardo M, Zeviani M, Uziel G, Farina L (2002) MRI in Leigh syndrome with SURF1 gene mutation. Ann Neurol 51(1):138–139.  https://doi.org/10.1002/ana.10031 CrossRefPubMedGoogle Scholar
  52. 52.
    Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39(4):223–235.  https://doi.org/10.1016/j.pediatrneurol.2008.07.013 CrossRefPubMedGoogle Scholar
  53. 53.
    Saneto RP, Friedman SD, Shaw DW (2008) Neuroimaging of mitochondrial disease. Mitochondrion 8(5–6):396–413.  https://doi.org/10.1016/j.mito.2008.05.003 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nurun Nahar Borna
    • 1
  • Yoshihito Kishita
    • 1
  • Masakazu Kohda
    • 1
  • Sze Chern Lim
    • 1
  • Masaru Shimura
    • 2
  • Yibo Wu
    • 3
  • Kaoru Mogushi
    • 1
  • Yukiko Yatsuka
    • 1
  • Hiroko Harashima
    • 4
  • Yuichiro Hisatomi
    • 5
  • Takuya Fushimi
    • 2
  • Keiko Ichimoto
    • 2
  • Kei Murayama
    • 2
  • Akira Ohtake
    • 4
  • Yasushi Okazaki
    • 1
    • 3
    Email author
  1. 1.Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of MedicineJuntendo UniversityTokyoJapan
  2. 2.Department of MetabolismChiba Children’s HospitalChibaJapan
  3. 3.Laboratory for Comprehensive Genomic AnalysisRIKEN Center for Integrative Medical SciencesYokohamaJapan
  4. 4.Department of PediatricsSaitama Medical UniversityMoroyamaJapan
  5. 5.Department of PediatricsKumamoto City HospitalKumamotoJapan

Personalised recommendations