Advertisement

neurogenetics

, Volume 19, Issue 4, pp 237–255 | Cite as

Ataxia telangiectasia alters the ApoB and reelin pathway

  • Júlia Canet-Pons
  • Ralf Schubert
  • Ruth Pia Duecker
  • Roland Schrewe
  • Sandra Wölke
  • Matthias Kieslich
  • Martina Schnölzer
  • Andreas Chiocchetti
  • Georg Auburger
  • Stefan Zielen
  • Uwe Warnken
Original Article

Abstract

Autosomal recessive ataxia telangiectasia (A-T) is characterized by radiosensitivity, immunodeficiency, and cerebellar neurodegeneration. A-T is caused by inactivating mutations in the ataxia telangiectasiamutated (ATM) gene, a serine-threonine protein kinase involved in DNA damage response and excitatory neurotransmission. The selective vulnerability of cerebellar Purkinje neurons (PN) to A-T is not well understood. Employing global proteomic profiling of cerebrospinal fluid from patients at ages around 15 years, we detected reduced calbindin, reelin, cerebellin-1, cerebellin-3, protocadherin fat 2, sempahorin 7A, and increased apolipoprotein B and J peptides. Bioinformatic enrichment was observed for pathways of lipoproteins, endocytosis, extracellular matrix receptor interaction, peptidase activity, adhesion, calcium binding, and complement immunity. This seemed important since secretion of reelin from glutamatergic afferent axons is crucial for PN lipoprotein receptor endocytosis and lipid signaling. Reelin expression is downregulated by irradiation and reelin/ApoB mutations are known causes of ataxia. Validation efforts in 2-month-old Atm−/− mice before onset of motor deficits confirmed cerebellar transcript reductions for reelin receptors Apoer2/Vldlr with increases for their ligands Apoe/Apoh and cholesterol 24-hydroxylase Cyp46a1. Concomitant dysregulations were found for Vglut2/Sema7a as climbing fiber markers, glutamate receptors like Grin2b, and calcium homeostasis factors (Atp2b2, Calb1, Itpr1), while factors involved in DNA damage, oxidative stress, neuroinflammation, and cell adhesion were normal at this stage. Quantitative immunoblots confirmed ApoB and ApoJ increases and VLDLR reduction in cerebellar tissue at the age of 2 months. These findings show that ApoB excess and reelin signaling deficits reflect the neurodegeneration in A-T in a sensitive and specific way. As extracellular factors, apolipoproteins and their cargo such as vitamin E may be useful for neuroprotective interventions.

Keywords

Ataxia telangiectasia Label-free mass spectrometry Diagnostic biomarkers Reelin ApoB 

Notes

Acknowledgements

We thank Dr. Suzana Gispert-Sánchez and Katrin Krug for advice and technical assistance. We are also grateful to Konrad Bochennek for the collection of the CSF samples and give many thanks to Ramona Mayer from the DKFZ Protein Analysis Core Facility for sample preparation for mass spectrometry.

Funding information

This research received funding from the A-T Children’s Project.

Supplementary material

10048_2018_557_Fig7_ESM.png (223 kb)
Suppl. Fig. 1

Proteomic analysis of the Cerebro-Spinal Fluid (CSF) from 11 A-T patients (age 4–16 years) and 9 controls (age 1–17 years), performed by a label-free protein quantification approach using nano ultra-high performance liquid chromatography/ nano electrospray mass spectrometry (nano UPLC/ nanoESI-MS). Analysis of the data was performed with the MaxQuant and Perseus quantitative proteomics softwares. Correlation between protein label-free quantitation and age is shown for (A) Reelin, (B) Calbindin, (C) cerebellin-3, (D) cerebellin-1, (E) Apolipoprotein B100, and (F) Clusterin/ApoJ. (PNG 222 kb)

10048_2018_557_MOESM1_ESM.tif (16.8 mb)
High Resolution Image (TIF 17216 kb)
10048_2018_557_Fig8_ESM.png (73 kb)
Suppl. Fig. 2

Changes in Reelin signaling in relation to age and to the ataxia score. Correlation of (A) Reelin LFQ values with ataxia scores and (B) correlation of the RELN/TotalProtein ratios with age in 11 A-T patients. Correlations were assessed by calculating Pearson’s correlation coefficient. (PNG 73 kb)

10048_2018_557_MOESM2_ESM.tif (5.3 mb)
High Resolution Image (TIF 5463 kb)
10048_2018_557_Fig9_ESM.png (2.3 mb)
Suppl. Fig 3

Coimmunofluorescent studies of cerebellum from ~2-month-old Atm−/− versus WT mice, displaying the immunoreactivity of (A) Reelin vs. Calbindin, (B) ApoB vs. Calbindin, (C) VLDLR vs. Calbindin. (PNG 2398 kb)

10048_2018_557_MOESM3_ESM.tif (16.8 mb)
High Resolution Image (TIF 17228 kb)
10048_2018_557_MOESM4_ESM.docx (20 kb)
Suppl. Table 1 Linear interaction model of protein label-free quantitation values from CSF and age in patients with A-T (n = 11) vs. control individuals (n = 9). (DOCX 20 kb)
10048_2018_557_MOESM5_ESM.xls (44 kb)
Suppl. Table 2 Biomathematical analysis of pathway enrichments among the molecular dysregulations in the CSF proteome of the 3 oldest A-T patients. (XLS 44 kb)

References

  1. 1.
    McKinnon PJ (2004) ATM and ataxia telangiectasia. EMBO Rep 5(8):772–776.  https://doi.org/10.1038/sj.embor.7400210 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Meneret A, Ahmar-Beaugendre Y, Rieunier G, Mahlaoui N, Gaymard B, Apartis E, Tranchant C, Rivaud-Pechoux S, Degos B, Benyahia B, Suarez F, Maisonobe T, Koenig M, Durr A, Stern MH, Dubois d'Enghien C, Fischer A, Vidailhet M, Stoppa-Lyonnet D, Grabli D, Anheim M (2014) The pleiotropic movement disorders phenotype of adult ataxia-telangiectasia. Neurology 83(12):1087–1095.  https://doi.org/10.1212/WNL.0000000000000794 CrossRefPubMedGoogle Scholar
  3. 3.
    Schieving JH, de Vries M, van Vugt JM, Weemaes C, van Deuren M, Nicolai J, Wevers RA, Willemsen MA (2014) Alpha-fetoprotein, a fascinating protein and biomarker in neurology. Eur J Paediatr Neurol 18(3):243–248.  https://doi.org/10.1016/j.ejpn.2013.09.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268(5218):1749–1753CrossRefGoogle Scholar
  5. 5.
    Herzog KH, Chong MJ, Kapsetaki M, Morgan JI, McKinnon PJ (1998) Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280(5366):1089–1091CrossRefGoogle Scholar
  6. 6.
    Cortez D, Wang Y, Qin J, Elledge SJ (1999) Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286(5442):1162–1166CrossRefGoogle Scholar
  7. 7.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166.  https://doi.org/10.1126/science.1140321 CrossRefPubMedGoogle Scholar
  8. 8.
    Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14(4):197–210CrossRefGoogle Scholar
  9. 9.
    Ambrose M, Gatti RA (2013) Pathogenesis of ataxia-telangiectasia: the next generation of ATM functions. Blood 121(20):4036–4045.  https://doi.org/10.1182/blood-2012-09-456897 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Degan P, d'Ischia M, Pallardo FV, Zatterale A, Brusco A, Calzone R, Cavalieri S, Kavakli K, Lloret A, Manini P, Pisanti MA, Vuttariello E, Pagano G (2007) Glutathione levels in blood from ataxia telangiectasia patients suggest in vivo adaptive mechanisms to oxidative stress. Clin Biochem 40(9–10):666–670.  https://doi.org/10.1016/j.clinbiochem.2007.03.013 CrossRefPubMedGoogle Scholar
  11. 11.
    Reichenbach J, Schubert R, Schindler D, Muller K, Bohles H, Zielen S (2002) Elevated oxidative stress in patients with ataxia telangiectasia. Antioxid Redox Signal 4(3):465–469.  https://doi.org/10.1089/15230860260196254 CrossRefPubMedGoogle Scholar
  12. 12.
    Yi M, Rosin MP, Anderson CK (1990) Response of fibroblast cultures from ataxia-telangiectasia patients to oxidative stress. Cancer Lett 54(1–2):43–50CrossRefGoogle Scholar
  13. 13.
    Schubert R, Reichenbach J, Royer N, Pichler M, Zielen S (2000) Spontaneous and oxidative stress-induced programmed cell death in lymphocytes from patients with ataxia telangiectasia (AT). Clin Exp Immunol 119(1):140–147CrossRefGoogle Scholar
  14. 14.
    Ludwig LB, Valiati VH, Palazzo RP, Jardim LB, da Rosa DP, Bona S, Rodrigues G, Marroni NP, Pra D, Maluf SW (2013) Chromosome instability and oxidative stress markers in patients with ataxia telangiectasia and their parents. Biomed Res Int 2013:762048.  https://doi.org/10.1155/2013/762048 CrossRefPubMedGoogle Scholar
  15. 15.
    Barlow C, Dennery PA, Shigenaga MK, Smith MA, Morrow JD, Roberts LJ 2nd, Wynshaw-Boris A, Levine RL (1999) Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci U S A 96(17):9915–9919CrossRefGoogle Scholar
  16. 16.
    Chen P, Peng C, Luff J, Spring K, Watters D, Bottle S, Furuya S, Lavin MF (2003) Oxidative stress is responsible for deficient survival and dendritogenesis in purkinje neurons from ataxia-telangiectasia mutated mutant mice. J Neurosci 23(36):11453–11460CrossRefGoogle Scholar
  17. 17.
    Stern N, Hochman A, Zemach N, Weizman N, Hammel I, Shiloh Y, Rotman G, Barzilai A (2002) Accumulation of DNA damage and reduced levels of nicotine adenine dinucleotide in the brains of Atm-deficient mice. J Biol Chem 277(1):602–608.  https://doi.org/10.1074/jbc.M106798200 CrossRefPubMedGoogle Scholar
  18. 18.
    Kamsler A, Daily D, Hochman A, Stern N, Shiloh Y, Rotman G, Barzilai A (2001) Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res 61(5):1849–1854PubMedGoogle Scholar
  19. 19.
    Chiesa N, Barlow C, Wynshaw-Boris A, Strata P, Tempia F (2000) Atm-deficient mice Purkinje cells show age-dependent defects in calcium spike bursts and calcium currents. Neuroscience 96(3):575–583CrossRefGoogle Scholar
  20. 20.
    Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10(19):2411–2422CrossRefGoogle Scholar
  21. 21.
    Pietzner J, Baer PC, Duecker RP, Merscher MB, Satzger-Prodinger C, Bechmann I, Wietelmann A, Del Turco D, Doering C, Kuci S, Bader P, Schirmer S, Zielen S, Schubert R (2013) Bone marrow transplantation improves the outcome of Atm-deficient mice through the migration of ATM-competent cells. Hum Mol Genet 22(3):493–507.  https://doi.org/10.1093/hmg/dds448 CrossRefPubMedGoogle Scholar
  22. 22.
    Kuljis RO, Chen G, Lee EY, Aguila MC, Xu Y (1999) ATM immunolocalization in mouse neuronal endosomes: implications for ataxia-telangiectasia. Brain Res 842(2):351–358CrossRefGoogle Scholar
  23. 23.
    Vinters HV, Gatti RA, Rakic P (1985) Sequence of cellular events in cerebellar ontogeny relevant to expression of neuronal abnormalities in ataxia-telangiectasia. Kroc Found Ser 19:233–255PubMedGoogle Scholar
  24. 24.
    Yang Y, Herrup K (2005) Loss of neuronal cell cycle control in ataxia-telangiectasia: a unified disease mechanism. J Neurosci 25(10):2522–2529.  https://doi.org/10.1523/JNEUROSCI.4946-04.2005 CrossRefPubMedGoogle Scholar
  25. 25.
    Gathmann B, Goldacker S, Klima M, Belohradsky BH, Notheis G, Ehl S, Ritterbusch H, Baumann U, Meyer-Bahlburg A, Witte T, Schmidt R, Borte M, Borte S, Linde R, Schubert R, Bienemann K, Laws HJ, Dueckers G, Roesler J, Rothoeft T, Kruger R, Scharbatke EC, Masjosthusmann K, Wasmuth JC, Moser O, Kaiser P, Gross-Wieltsch U, Classen CF, Horneff G, Reiser V, Binder N, El-Helou SM, Klein C, Grimbacher B, Kindle G (2013) The German national registry for primary immunodeficiencies (PID). Clin Exp Immunol 173(2):372–380.  https://doi.org/10.1111/cei.12105 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Klockgether T, Schroth G, Diener HC, Dichgans J (1990) Idiopathic cerebellar ataxia of late onset: natural history and MRI morphology. J Neurol Neurosurg Psychiatry 53(4):297–305CrossRefGoogle Scholar
  27. 27.
    Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143CrossRefGoogle Scholar
  28. 28.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372.  https://doi.org/10.1038/nbt.1511 CrossRefPubMedGoogle Scholar
  29. 29.
    Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805.  https://doi.org/10.1021/pr101065j CrossRefPubMedGoogle Scholar
  30. 30.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740.  https://doi.org/10.1038/nmeth.3901 CrossRefPubMedGoogle Scholar
  31. 31.
    Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815.  https://doi.org/10.1093/nar/gks1094 CrossRefPubMedGoogle Scholar
  32. 32.
    Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171CrossRefGoogle Scholar
  33. 33.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dzieciatkowska M, Qi G, You J, Bemis KG, Sahm H, Lederman HM, Crawford TO, Gelbert LM, Rothblum-Oviatt C, Wang M (2011) Proteomic characterization of cerebrospinal fluid from ataxia-telangiectasia (A-T) patients using a LC/MS-based label-free protein quantification technology. Int J Proteomics 2011:578903.  https://doi.org/10.1155/2011/578903 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4(1):62–73.  https://doi.org/10.1080/14734220510007950 CrossRefPubMedGoogle Scholar
  36. 36.
    Hentati F, El-Euch G, Bouhlal Y, Amouri R (2012) Ataxia with vitamin E deficiency and abetalipoproteinemia. Handb Clin Neurol 103:295–305.  https://doi.org/10.1016/B978-0-444-51892-7.00018-8 CrossRefPubMedGoogle Scholar
  37. 37.
    Bereczki E, Bernat G, Csont T, Ferdinandy P, Scheich H, Santha M (2008) Overexpression of human apolipoprotein B-100 induces severe neurodegeneration in transgenic mice. J Proteome Res 7(6):2246–2252.  https://doi.org/10.1021/pr7006329 CrossRefPubMedGoogle Scholar
  38. 38.
    Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S, Nakao K, Katsuki M, Hayashizaki Y (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat Genet 10(1):77–83.  https://doi.org/10.1038/ng0595-77 CrossRefPubMedGoogle Scholar
  39. 39.
    Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A 94(4):1488–1493CrossRefGoogle Scholar
  40. 40.
    Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, Parris J, Rong Y, Watanabe M, Yuzaki M, Morgan JI (2005) Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci 8(11):1534–1541.  https://doi.org/10.1038/nn1576 CrossRefPubMedGoogle Scholar
  41. 41.
    Labauge P, Renard D, Castelnovo G, Sabourdy F, de Champfleur N, Levade T (2009) Beta-mannosidosis: a new cause of spinocerebellar ataxia. Clin Neurol Neurosurg 111(1):109–110.  https://doi.org/10.1016/j.clineuro.2008.09.007 CrossRefPubMedGoogle Scholar
  42. 42.
    Ehling R, Noskova L, Stranecky V, Hartmannova H, Pristoupilova A, Hodanova K, Benke T, Kovacs GG, Strobel T, Niedermuller U, Wagner M, Nachbauer W, Janecke A, Budka H, Boesch S, Kmoch S (2013) Cerebellar dysfunction in a family harboring the PSEN1 mutation co-segregating with a cathepsin D variant p.A58V. J Neurol Sci 326(1–2):75–82.  https://doi.org/10.1016/j.jns.2013.01.017 CrossRefPubMedGoogle Scholar
  43. 43.
    Hersheson J, Burke D, Clayton R, Anderson G, Jacques TS, Mills P, Wood NW, Gissen P, Clayton P, Fearnley J, Mole SE, Houlden H (2014) Cathepsin D deficiency causes juvenile-onset ataxia and distinctive muscle pathology. Neurology 83(20):1873–1875.  https://doi.org/10.1212/WNL.0000000000000981 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Nakayama M, Nakajima D, Yoshimura R, Endo Y, Ohara O (2002) MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells. Mol Cell Neurosci 20(4):563–578CrossRefGoogle Scholar
  45. 45.
    Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140(11):2860–2878.  https://doi.org/10.1093/brain/awx251 CrossRefPubMedGoogle Scholar
  46. 46.
    Squarr AJ, Brinkmann K, Chen B, Steinbacher T, Ebnet K, Rosen MK, Bogdan S (2016) Correction: Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation. J Cell Biol 212(7):883.  https://doi.org/10.1083/jcb.20150808103082016c CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Squarr AJ, Brinkmann K, Chen B, Steinbacher T, Ebnet K, Rosen MK, Bogdan S (2016) Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation. J Cell Biol 212(5):591–603.  https://doi.org/10.1083/jcb.201508081 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Takeda Y, Akasaka K, Lee S, Kobayashi S, Kawano H, Murayama S, Takahashi N, Hashimoto K, Kano M, Asano M, Sudo K, Iwakura Y, Watanabe K (2003) Impaired motor coordination in mice lacking neural recognition molecule NB-3 of the contactin/F3 subgroup. J Neurobiol 56(3):252–265.  https://doi.org/10.1002/neu.10222 CrossRefPubMedGoogle Scholar
  49. 49.
    Wallquist W, Plantman S, Thams S, Thyboll J, Kortesmaa J, Lannergren J, Domogatskaya A, Ogren SO, Risling M, Hammarberg H, Tryggvason K, Cullheim S (2005) Impeded interaction between Schwann cells and axons in the absence of laminin alpha4. J Neurosci 25(14):3692–3700.  https://doi.org/10.1523/JNEUROSCI.5225-04.2005 CrossRefPubMedGoogle Scholar
  50. 50.
    Seyrantepe V, Poupetova H, Froissart R, Zabot MT, Maire I, Pshezhetsky AV (2003) Molecular pathology of NEU1 gene in sialidosis. Hum Mutat 22(5):343–352.  https://doi.org/10.1002/humu.10268 CrossRefPubMedGoogle Scholar
  51. 51.
    Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A 95(6):3221–3226CrossRefGoogle Scholar
  52. 52.
    Castagna C, Merighi A, Lossi L (2016) Cell death and neurodegeneration in the postnatal development of cerebellar vermis in normal and Reeler mice. Ann Anat 207:76–90.  https://doi.org/10.1016/j.aanat.2016.01.010 CrossRefPubMedGoogle Scholar
  53. 53.
    Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Observations on Golgi epithelial cells and granule cells in the cerebellum of the reeler mutant mouse. Brain Res 350(1–2):103–112CrossRefGoogle Scholar
  54. 54.
    Ramos-Moreno T, Galazo MJ, Porrero C, Martinez-Cerdeno V, Clasca F (2006) Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur J Neurosci 23(2):401–422.  https://doi.org/10.1111/j.1460-9568.2005.04567.x CrossRefPubMedGoogle Scholar
  55. 55.
    Niu S, Yabut O, D'Arcangelo G (2008) The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci 28(41):10339–10348.  https://doi.org/10.1523/JNEUROSCI.1917-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723.  https://doi.org/10.1038/374719a0 CrossRefPubMedGoogle Scholar
  57. 57.
    Miyata T, Ono Y, Okamoto M, Masaoka M, Sakakibara A, Kawaguchi A, Hashimoto M, Ogawa M (2010) Migration, early axonogenesis, and Reelin-dependent layer-forming behavior of early/posterior-born Purkinje cells in the developing mouse lateral cerebellum. Neural Dev 5:23.  https://doi.org/10.1186/1749-8104-5-23 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26(1):93–96.  https://doi.org/10.1038/79246 CrossRefPubMedGoogle Scholar
  59. 59.
    Herz J, Chen Y (2006) Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci 7(11):850–859.  https://doi.org/10.1038/nrn2009 CrossRefPubMedGoogle Scholar
  60. 60.
    Nakamura K, Beppu M, Sakai K, Yagyu H, Matsumaru S, Kohno T, Hattori M (2016) The C-terminal region of Reelin is necessary for proper positioning of a subset of Purkinje cells in the postnatal cerebellum. Neuroscience 336:20–29.  https://doi.org/10.1016/j.neuroscience.2016.08.039 CrossRefPubMedGoogle Scholar
  61. 61.
    Okoro EU, Zhang H, Guo Z, Yang F, Smith C Jr, Yang H (2015) A subregion of reelin suppresses lipoprotein-induced cholesterol accumulation in macrophages. PLoS One 10(8):e0136895.  https://doi.org/10.1371/journal.pone.0136895 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sinagra M, Verrier D, Frankova D, Korwek KM, Blahos J, Weeber EJ, Manzoni OJ, Chavis P (2005) Reelin, very-low-density lipoprotein receptor, and apolipoprotein E receptor 2 control somatic NMDA receptor composition during hippocampal maturation in vitro. J Neurosci 25(26):6127–6136.  https://doi.org/10.1523/JNEUROSCI.1757-05.2005 CrossRefPubMedGoogle Scholar
  63. 63.
    Darmanto W, Inouye M, Hayasaka S, Takagishi Y, Ogawa M, Mikoshiba K, Murata Y (1998) Disturbed Purkinje cell migration due to reduced expression of Reelin by X-irradiation in developing rat cerebellum. Biol Sci Space 12(3):254–255PubMedGoogle Scholar
  64. 64.
    Lussier AL, Caruncho HJ, Kalynchuk LE (2009) Repeated exposure to corticosterone, but not restraint, decreases the number of reelin-positive cells in the adult rat hippocampus. Neurosci Lett 460(2):170–174.  https://doi.org/10.1016/j.neulet.2009.05.050 CrossRefPubMedGoogle Scholar
  65. 65.
    McCullough SD, Xu X, Dent SY, Bekiranov S, Roeder RG, Grant PA (2012) Reelin is a target of polyglutamine expanded ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes. Proc Natl Acad Sci U S A 109(52):21319–21324.  https://doi.org/10.1073/pnas.1218331110 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Niu S, Renfro A, Quattrocchi CC, Sheldon M, D’Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 41(1):71–84CrossRefGoogle Scholar
  67. 67.
    Zhang G, Assadi AH, McNeil RS, Beffert U, Wynshaw-Boris A, Herz J, Clark GD, D’Arcangelo G (2007) The Pafah1b complex interacts with the reelin receptor VLDLR. PLoS One 2(2):e252.  https://doi.org/10.1371/journal.pone.0000252 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Assadi AH, Zhang G, Beffert U, McNeil RS, Renfro AL, Niu S, Quattrocchi CC, Antalffy BA, Sheldon M, Armstrong DD, Wynshaw-Boris A, Herz J, D’Arcangelo G, Clark GD (2003) Interaction of reelin signaling and Lis1 in brain development. Nat Genet 35(3):270–276.  https://doi.org/10.1038/ng1257 CrossRefPubMedGoogle Scholar
  69. 69.
    Nothwang HG, Kim HG, Aoki J, Geisterfer M, Kubart S, Wegner RD, van Moers A, Ashworth LK, Haaf T, Bell J, Arai H, Tommerup N, Ropers HH, Wirth J (2001) Functional hemizygosity of PAFAH1B3 due to a PAFAH1B3-CLK2 fusion gene in a female with mental retardation, ataxia and atrophy of the brain. Hum Mol Genet 10(8):797–806CrossRefGoogle Scholar
  70. 70.
    Chen X, Guo Z, Okoro EU, Zhang H, Zhou L, Lin X, Rollins AT, Yang H (2012) Up-regulation of ATP binding cassette transporter A1 expression by very low density lipoprotein receptor and apolipoprotein E receptor 2. J Biol Chem 287(6):3751–3759.  https://doi.org/10.1074/jbc.M111.310888 CrossRefPubMedGoogle Scholar
  71. 71.
    Kobayashi K, Oka K, Forte T, Ishida B, Teng B, Ishimura-Oka K, Nakamuta M, Chan L (1996) Reversal of hypercholesterolemia in low density lipoprotein receptor knockout mice by adenovirus-mediated gene transfer of the very low density lipoprotein receptor. J Biol Chem 271(12):6852–6860CrossRefGoogle Scholar
  72. 72.
    Leeb C, Eresheim C, Nimpf J (2014) Clusterin is a ligand for apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR) and signals via the Reelin-signaling pathway. J Biol Chem 289(7):4161–4172.  https://doi.org/10.1074/jbc.M113.529271 CrossRefPubMedGoogle Scholar
  73. 73.
    Konrad L, Hackethal A, Oehmke F, Berkes E, Engel J, Tinneberg HR (2016) Analysis of clusterin and clusterin receptors in the endometrium and clusterin levels in cervical mucus of endometriosis. Reprod Sci 23(10):1371–1380.  https://doi.org/10.1177/1933719116641756 CrossRefPubMedGoogle Scholar
  74. 74.
    Andersen OM, Yeung CH, Vorum H, Wellner M, Andreassen TK, Erdmann B, Mueller EC, Herz J, Otto A, Cooper TG, Willnow TE (2003) Essential role of the apolipoprotein E receptor-2 in sperm development. J Biol Chem 278(26):23989–23995.  https://doi.org/10.1074/jbc.M302157200 CrossRefPubMedGoogle Scholar
  75. 75.
    Yasuhara O, Aimi Y, Yamada T, Matsuo A, McGeer EG, McGeer PL (1994) Clusterin as a marker for ischaemic Purkinje cells in human brain. Neurodegeneration 3(4):325–329PubMedGoogle Scholar
  76. 76.
    Norman DJ, Feng L, Cheng SS, Gubbay J, Chan E, Heintz N (1995) The lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 121(4):1183–1193PubMedGoogle Scholar
  77. 77.
    Thambisetty M, An Y, Kinsey A, Koka D, Saleem M, Guntert A, Kraut M, Ferrucci L, Davatzikos C, Lovestone S, Resnick SM (2012) Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment. Neuroimage 59(1):212–217.  https://doi.org/10.1016/j.neuroimage.2011.07.056 CrossRefPubMedGoogle Scholar
  78. 78.
    Wang Y, Guo Y, Wang X, Huang J, Shang J, Sun S (2011) Human serum amyloid P functions as a negative regulator of the innate and adaptive immune responses to DNA vaccines. J Immunol 186(5):2860–2870.  https://doi.org/10.4049/jimmunol.1003641 CrossRefPubMedGoogle Scholar
  79. 79.
    Zheng L, Wu T, Zeng C, Li X, Wen D, Ji T, Lan T, Xing L, Li J, He X, Wang L (2016) SAP deficiency mitigated atherosclerotic lesions in ApoE(−/−) mice. Atherosclerosis 244:179–187.  https://doi.org/10.1016/j.atherosclerosis.2015.11.009 CrossRefPubMedGoogle Scholar
  80. 80.
    Borovkova EI, Antipova NV, Komeenko TV, Shakhparonov MI, Borovkov IM (2017) Paraoxonase: the universal factor of antioxidant defense in human body. Vestn Ross Akad Med Nauk 72(1):5–10.  https://doi.org/10.15690/vramn764 CrossRefPubMedGoogle Scholar
  81. 81.
    Chistiakov DA, Melnichenko AA, Orekhov AN, Bobryshev YV (2017) Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie 132:19–27.  https://doi.org/10.1016/j.biochi.2016.10.010 CrossRefPubMedGoogle Scholar
  82. 82.
    Deakin S, Moren X, James RW (2005) Very low density lipoproteins provide a vector for secretion of paraoxonase-1 from cells. Atherosclerosis 179(1):17–25.  https://doi.org/10.1016/j.atherosclerosis.2004.08.039 CrossRefPubMedGoogle Scholar
  83. 83.
    Rosenblat M, Ward S, Volkova N, Hayek T, Aviram M (2012) VLDL triglycerides inhibit HDL-associated paraoxonase 1 (PON1) activity: in vitro and in vivo studies. Biofactors 38(4):292–299.  https://doi.org/10.1002/biof.1021 CrossRefPubMedGoogle Scholar
  84. 84.
    van Himbergen TM, van Tits LJ, Ter Avest E, Roest M, Voorbij HA, de Graaf J, Stalenhoef AF (2008) Paraoxonase (PON1) is associated with familial combined hyperlipidemia. Atherosclerosis 199(1):87–94.  https://doi.org/10.1016/j.atherosclerosis.2007.10.017 CrossRefPubMedGoogle Scholar
  85. 85.
    Wang W, Karagogeos D, Kilpatrick DL (2011) The effects of Tag-1 on the maturation of mouse cerebellar granule neurons. Cell Mol Neurobiol 31(3):351–356.  https://doi.org/10.1007/s10571-010-9641-6 CrossRefPubMedGoogle Scholar
  86. 86.
    Kyriakopoulou K, de Diego I, Wassef M, Karagogeos D (2002) A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla. Development 129(2):287–296PubMedGoogle Scholar
  87. 87.
    Miura E, Matsuda K, Morgan JI, Yuzaki M, Watanabe M (2009) Cbln1 accumulates and colocalizes with Cbln3 and GluRdelta2 at parallel fiber-Purkinje cell synapses in the mouse cerebellum. Eur J Neurosci 29(4):693–706.  https://doi.org/10.1111/j.1460-9568.2009.06632.x CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chetty C, Dontula R, Gujrati M, Dinh DH, Lakka SS (2012) Blockade of SOX4 mediated DNA repair by SPARC enhances radioresponse in medulloblastoma. Cancer Lett 323(2):188–198.  https://doi.org/10.1016/j.canlet.2012.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H, Hirai H, Aiba A, Watanabe M, Kano M (2014) Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344(6187):1020–1023.  https://doi.org/10.1126/science.1252514 CrossRefPubMedGoogle Scholar
  90. 90.
    Trouw LA, Nilsson SC, Goncalves I, Landberg G, Blom AM (2005) C4b-binding protein binds to necrotic cells and DNA, limiting DNA release and inhibiting complement activation. J Exp Med 201(12):1937–1948.  https://doi.org/10.1084/jem.20050189 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Matthews KW, Mueller-Ortiz SL, Wetsel RA (2004) Carboxypeptidase N: a pleiotropic regulator of inflammation. Mol Immunol 40(11):785–793CrossRefGoogle Scholar
  92. 92.
    Kurokawa J, Arai S, Nakashima K, Nagano H, Nishijima A, Miyata K, Ose R, Mori M, Kubota N, Kadowaki T, Oike Y, Koga H, Febbraio M, Iwanaga T, Miyazaki T (2010) Macrophage-derived AIM is endocytosed into adipocytes and decreases lipid droplets via inhibition of fatty acid synthase activity. Cell Metab 11(6):479–492.  https://doi.org/10.1016/j.cmet.2010.04.013 CrossRefPubMedGoogle Scholar
  93. 93.
    Miyazaki T, Kurokawa J, Arai S (2011) AIMing at metabolic syndrome. Towards the development of novel therapies for metabolic diseases via apoptosis inhibitor of macrophage (AIM). Circ J 75(11):2522–2531CrossRefGoogle Scholar
  94. 94.
    Sanjurjo L, Aran G, Roher N, Valledor AF, Sarrias MR (2015) AIM/CD5L: a key protein in the control of immune homeostasis and inflammatory disease. J Leukoc Biol 98(2):173–184.  https://doi.org/10.1189/jlb.3RU0215-074R CrossRefPubMedGoogle Scholar
  95. 95.
    Wang C, Yosef N, Gaublomme J, Wu C, Lee Y, Clish CB, Kaminski J, Xiao S, Meyer Zu Horste G, Pawlak M, Kishi Y, Joller N, Karwacz K, Zhu C, Ordovas-Montanes M, Madi A, Wortman I, Miyazaki T, Sobel RA, Park H, Regev A, Kuchroo VK (2015) CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163(6):1413–1427.  https://doi.org/10.1016/j.cell.2015.10.068 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Pineiro M, Alava MA, Gonzalez-Ramon N, Osada J, Lasierra P, Larrad L, Pineiro A, Lampreave F (1999) ITIH4 serum concentration increases during acute-phase processes in human patients and is up-regulated by interleukin-6 in hepatocarcinoma HepG2 cells. Biochem Biophys Res Commun 263(1):224–229.  https://doi.org/10.1006/bbrc.1999.1349 CrossRefPubMedGoogle Scholar
  97. 97.
    Pineiro M, Andres M, Iturralde M, Carmona S, Hirvonen J, Pyorala S, Heegaard PM, Tjornehoj K, Lampreave F, Pineiro A, Alava MA (2004) ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) is a new acute-phase protein isolated from cattle during experimental infection. Infect Immun 72(7):3777–3782.  https://doi.org/10.1128/IAI.72.7.3777-3782.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Barnes JA, Ebner BA, Duvick LA, Gao W, Chen G, Orr HT, Ebner TJ (2011) Abnormalities in the climbing fiber-Purkinje cell circuitry contribute to neuronal dysfunction in ATXN1[82Q] mice. J Neurosci 31(36):12778–12789.  https://doi.org/10.1523/JNEUROSCI.2579-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Groc L, Choquet D, Stephenson FA, Verrier D, Manzoni OJ, Chavis P (2007) NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci 27(38):10165–10175.  https://doi.org/10.1523/JNEUROSCI.1772-07.2007 CrossRefPubMedGoogle Scholar
  100. 100.
    Luo X, Suzuki M, Ghandhi SA, Amundson SA, Boothman DA (2014) ATM regulates insulin-like growth factor 1-secretory clusterin (IGF-1-sCLU) expression that protects cells against senescence. PLoS One 9(6):e99983.  https://doi.org/10.1371/journal.pone.0099983 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Botella-Lopez A, Burgaya F, Gavin R, Garcia-Ayllon MS, Gomez-Tortosa E, Pena-Casanova J, Urena JM, Del Rio JA, Blesa R, Soriano E, Saez-Valero J (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A 103(14):5573–5578.  https://doi.org/10.1073/pnas.0601279103 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Corral-Juan M, Serrano-Munuera C, Rabano A, Cota-Gonzalez D, Segarra-Roca A, Ispierto L, Cano-Orgaz AT, Adarmes AD, Mendez-Del-Barrio C, Jesus S, Mir P, Volpini V, Alvarez-Ramo R, Sanchez I, Matilla-Duenas A (2018) Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 141(7):1981–1997.  https://doi.org/10.1093/brain/awy137 CrossRefPubMedGoogle Scholar
  103. 103.
    Saez-Valero J, Costell M, Sjogren M, Andreasen N, Blennow K, Luque JM (2003) Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s disease. J Neurosci Res 72(1):132–136.  https://doi.org/10.1002/jnr.10554 CrossRefPubMedGoogle Scholar
  104. 104.
    Cheng A, Zhao T, Tse KH, Chow HM, Cui Y, Jiang L, Du S, Loy MMT, Herrup K (2018) ATM and ATR play complementary roles in the behavior of excitatory and inhibitory vesicle populations. Proc Natl Acad Sci U S A 115(2):E292–E301.  https://doi.org/10.1073/pnas.1716892115 CrossRefPubMedGoogle Scholar
  105. 105.
    Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I, Sweatt JD, Li WP, Adelmann G, Frotscher M, Hammer RE, Herz J (2005) Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47(4):567–579.  https://doi.org/10.1016/j.neuron.2005.07.007 CrossRefPubMedGoogle Scholar
  106. 106.
    Slemmer JE, De Zeeuw CI, Weber JT (2005) Don’t get too excited: mechanisms of glutamate-mediated Purkinje cell death. Prog Brain Res 148:367–390.  https://doi.org/10.1016/S0079-6123(04)48029-7 CrossRefPubMedGoogle Scholar
  107. 107.
    Leuzzi V, D'Agnano D, Menotta M, Caputi C, Chessa L, Magnani M (2018) Ataxia-telangiectasia: a new remitting form with a peculiar transcriptome signature. Neurol Genet 4(2):e228.  https://doi.org/10.1212/NXG.0000000000000228 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Guarini A, Marinelli M, Tavolaro S, Bellacchio E, Magliozzi M, Chiaretti S, De Propris MS, Peragine N, Santangelo S, Paoloni F, Nanni M, Del Giudice I, Mauro FR, Torrente I, Foa R (2012) ATM gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 97(1):47–55.  https://doi.org/10.3324/haematol.2011.049270 CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Garcia-Miranda P, Vazquez-Carretero MD, Gutierrez G, Peral MJ, Ilundain AA (2012) Lack of reelin modifies the gene expression in the small intestine of mice. J Physiol Biochem 68(2):205–218.  https://doi.org/10.1007/s13105-011-0132-0 CrossRefPubMedGoogle Scholar
  110. 110.
    Homer VM, George PM, du Toit S, Davidson JS, Wilson CJ (2005) Mental retardation and ataxia due to normotriglyceridemic hypobetalipoproteinemia. Ann Neurol 58(1):160–163.  https://doi.org/10.1002/ana.20531 CrossRefPubMedGoogle Scholar
  111. 111.
    Wu J, Xiao Y, Liu J, Yang H, Dong X, Hu S, Jin S, Wu D (2014) Potential role of ATM in hepatocyte endocytosis of ApoE-deficient, ApoB48-containing lipoprotein in ApoE-deficient mice. Int J Mol Med 33(2):462–468.  https://doi.org/10.3892/ijmm.2013.1566 CrossRefPubMedGoogle Scholar
  112. 112.
    Wu D, Yang H, Xiang W, Zhou L, Shi M, Julies G, Laplante JM, Ballard BR, Guo Z (2005) Heterozygous mutation of ataxia-telangiectasia mutated gene aggravates hypercholesterolemia in apoE-deficient mice. J Lipid Res 46(7):1380–1387.  https://doi.org/10.1194/jlr.M400430-JLR200 CrossRefPubMedGoogle Scholar
  113. 113.
    Averna M, Seip RL, Mankowitz K, Schonfeld G (1993) Postprandial lipemia in subjects with hypobetalipoproteinemia and a single intestinal allele for apoB-48. J Lipid Res 34(11):1957–1967PubMedGoogle Scholar
  114. 114.
    Reichenbach J, Schubert R, Schwan C, Muller K, Bohles HJ, Zielen S (1999) Anti-oxidative capacity in patients with ataxia telangiectasia. Clin Exp Immunol 117(3):535–539CrossRefGoogle Scholar
  115. 115.
    Caston J, Delhaye-Bouchaud N, Mariani J (1995) Motor behavior of heterozygous staggerer mutant (+/sg) versus normal (+/+) mice during aging. Behav Brain Res 72(1–2):97–102CrossRefGoogle Scholar
  116. 116.
    Hadj-Sahraoui N, Frederic F, Zanjani H, Herrup K, Delhaye-Bouchaud N, Mariani J (1997) Purkinje cell loss in heterozygous staggerer mutant mice during aging. Brain Res Dev Brain Res 98(1):1–8CrossRefGoogle Scholar
  117. 117.
    Hadj-Sahraoui N, Frederic F, Zanjani H, Delhaye-Bouchaud N, Herrup K, Mariani J (2001) Progressive atrophy of cerebellar Purkinje cell dendrites during aging of the heterozygous staggerer mouse (Rora(+/sg)). Brain Res Dev Brain Res 126(2):201–209CrossRefGoogle Scholar
  118. 118.
    Doulazmi M, Hadj-Sahraoui N, Frederic F, Mariani J (2002) Diminishing Purkinje cell populations in the cerebella of aging heterozygous Purkinje cell degeneration but not heterozygous nervous mice. J Neurogenet 16(2):111–123CrossRefGoogle Scholar
  119. 119.
    Janmaat S, Akwa Y, Doulazmi M, Bakouche J, Gautheron V, Liere P, Eychenne B, Pianos A, Luiten P, Groothuis T, Baulieu EE, Mariani J, Sherrard RM, Frederic F (2011) Age-related Purkinje cell death is steroid dependent: RORalpha haplo-insufficiency impairs plasma and cerebellar steroids and Purkinje cell survival. Age (Dordr) 33(4):565–578.  https://doi.org/10.1007/s11357-010-9203-3 CrossRefGoogle Scholar
  120. 120.
    Doulazmi M, Capone F, Frederic F, Bakouche J, Lemaigre-Dubreuil Y, Mariani J (2006) Cerebellar Purkinje cell loss in heterozygous Rora+/− mice: a longitudinal study. J Neurogenet 20(1–2):1–17.  https://doi.org/10.1080/01677060600685832 CrossRefPubMedGoogle Scholar
  121. 121.
    Boukhtouche F, Doulazmi M, Frederic F, Dusart I, Brugg B, Mariani J (2006) RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5(2):97–104.  https://doi.org/10.1080/14734220600750184 CrossRefPubMedGoogle Scholar
  122. 122.
    Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, Bock HH, Junghans D, Frotscher M (2011) Role for Reelin in neurotransmitter release. J Neurosci 31(7):2352–2360.  https://doi.org/10.1523/JNEUROSCI.3984-10.2011 CrossRefPubMedGoogle Scholar
  123. 123.
    Fatemi SH, Reutiman TJ, Folsom TD (2009) Chronic psychotropic drug treatment causes differential expression of Reelin signaling system in frontal cortex of rats. Schizophr Res 111(1–3):138–152.  https://doi.org/10.1016/j.schres.2009.03.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Júlia Canet-Pons
    • 1
  • Ralf Schubert
    • 2
  • Ruth Pia Duecker
    • 2
  • Roland Schrewe
    • 2
  • Sandra Wölke
    • 2
  • Matthias Kieslich
    • 3
  • Martina Schnölzer
    • 4
  • Andreas Chiocchetti
    • 5
  • Georg Auburger
    • 1
  • Stefan Zielen
    • 2
  • Uwe Warnken
    • 3
  1. 1.Exp. NeurologyGoethe University Medical SchoolFrankfurt am MainGermany
  2. 2.Division for Allergy, Pneumology and Cystic Fibrosis, Department for Children and AdolescentsGoethe UniversityFrankfurt am MainGermany
  3. 3.Division for Neurology, Department for Children and AdolescentsGoethe UniversityFrankfurt am MainGermany
  4. 4.Functional Proteome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
  5. 5.Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyGoethe University Medical SchoolFrankfurt am MainGermany

Personalised recommendations