The biocompatibility and bioactivity of hemodialysis membranes: their impact in end-stage renal disease

  • Michaela Kohlová
  • Célia Gomes Amorim
  • Alberto Araújo
  • Alice Santos-SilvaEmail author
  • Petr Solich
  • Maria Conceição B. S. M. MontenegroEmail author
Review Artificial Kidney / Dialysis


End-stage renal disease is a growing health problem with increasing prevalence and high health care costs. Patients suffering from end-stage renal disease exhibit higher morbidity and mortality rates compared to the general population. These patients, who are treated using hemodialysis, typically suffer from anemia, inflammation, and oxidative stress. Inadequate dialyzer membrane biocompatibility exacerbates these negative side effects. Modifications of the composition of hemodialysis membranes have improved their biocompatibility and improve the patients’ quality of life. Recently, the use of dialyzer membranes coated with bioactive compounds has also been proposed to further ameliorate dialysis-associated problems. Based on a survey of the current literature, application of bioactive membranes decreases the inflammation and oxidative stress of patients treated with hemodialysis.


Kidney disease Hemodialysis membranes Bioactive membranes Oxidative stress Inflammation 



The author, Michaela Kohlová, is grateful to the Charles University Grant Agency for GAUK Grant No. 860216 and would like to acknowledge the financial support of the specific research project, No. SVV 260 412. This work was also financially supported by the STARSS project (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000465) co-funded by the ERDF. FCT/MEC co-financed by the FEDER, under Partnership Agreement PT2020 (UID/MULTI/04378/2013—POCI/01/0145/FEDER/007728) together with Norte Portugal Regional Coordination and Development Commission (CCDR-N)/NORTE2020/Portugal 2020 (Norte-01-0145-FEDER-000024) and POCI-01-0145-FEDER-031322 also supported this study.


  1. 1.
    National Kidney F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39:1–266.CrossRefGoogle Scholar
  2. 2.
    Glorieux G, Schepers E, Vanholder RC. Uremic toxins in chronic renal failure. Prilozi. 2007;28:173–204.PubMedGoogle Scholar
  3. 3.
    Karkar A. Modalities of hemodialysis: quality improvement. Saudi J Kidney Dis Transplant. 2012;23:1145–61.Google Scholar
  4. 4.
    Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63:1934–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Piroddi M, Bartolini D, Ciffolilli S, Galli F. Nondialyzable uremic toxins. Blood Purif. 2013;35:30–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Libetta C, Sepe V, Esposito P, Galli F, Dal Canton A. Oxidative stress and inflammation: implications in uremia and hemodialysis. Clin Biochem. 2011;44:1189–98.PubMedCrossRefGoogle Scholar
  7. 7.
    Morena M, Delbosc S, Dupuy AM, Canaud B, Cristol JP. Overproduction of reactive oxygen species in end-stage renal disease patients: a potential component of hemodialysis-associated inflammation. Hemodial Int. 2005;9:37–46.PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen G, Horl WH. Immune dysfunction in uremia—an update. Toxins (Basel). 2012;4:962–90.CrossRefGoogle Scholar
  9. 9.
    Galli F. Protein damage and inflammation in uraemia and dialysis patients. Nephrol Dial Transplant. 2007;22:v20–36.PubMedCrossRefGoogle Scholar
  10. 10.
    Himmelfarb J. Oxidative stress in hemodialysis. Contrib Nephrol. 2008;161:132–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65:1009–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Yao Q, Pecoits-Filho R, Lindholm B, Stenvinkel P. Traditional and non-traditional risk factors as contributors to atherosclerotic cardiovascular disease in end-stage renal disease. Scand J Urol Nephrol. 2004;38:405–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complications. Prim Care. 2008;35:329–44 (vii).PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Pendse S, Singh AK. Complications of chronic kidney disease: anemia, mineral metabolism, and cardiovascular disease. Med Clin N Am. 2005;89:549–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88:950–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bruck K, Stel VS, Gambaro G, Hallan S, Volzke H, Arnlov J, et al. CKD prevalence varies across the European general population. J Am Soc Nephrol. 2016;27:2135–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Levey AS, Coresh J. Chronic kidney disease. Lancet. 2012;379:165–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Barsoum RS. Chronic kidney disease in the developing world. N Engl J Med. 2006;354:997–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Stevens PE, Levin A, Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825–30.PubMedCrossRefGoogle Scholar
  21. 21.
    Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS One. 2016;11:e0158765.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Intern Med. 2009;169:342–50.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hedgeman E, Lipworth L, Lowe K, Saran R, Do T, Fryzek J. International burden of chronic kidney disease and secondary hyperparathyroidism: a systematic review of the literature and available data. Int J Nephrol. 2015;2015:184321.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Abe M, Hamano T, Wada A, Nakai S, Masakane I, Renal Data Registry Committee JSfDT. Effect of dialyzer membrane materials on survival in chronic hemodialysis patients: results from the annual survey of the Japanese Nationwide Dialysis Registry. PLoS One. 2017;12:e0184424.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dasgupta I, Shroff R, Bennett-Jones D, McVeigh G, Group NHGD. Management of hyperphosphataemia in chronic kidney disease: summary of National Institute for Health and Clinical Excellence (NICE) guideline. Nephron Clin Pract. 2013;124:1–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Stenvinkel P, Carrero JJ, Axelsson J, Lindholm B, Heimburger O, Massy Z. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin J Am Soc Nephrol. 2008;3:505–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Shlipak MG, Fried LF, Cushman M, Manolio TA, Peterson D, Stehman-Breen C, et al. Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA. 2005;293:1737–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Muntner P, Hamm LL, Kusek JW, Chen J, Whelton PK, He J. The prevalence of nontraditional risk factors for coronary heart disease in patients with chronic kidney disease. Ann Intern Med. 2004;140:9–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Zoccali C. Cardiovascular risk in uraemic patients—is it fully explained by classical risk factors? Nephrol Dial Transplant. 2000;15:454–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Liyanage T, Ninomiya T, Jha V, Neal B, Patrice HM, Okpechi I, et al. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet. 2015;385:1975–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Chang YK, Hsu CC, Chen PC, Chen YS, Hwang SJ, Li TC, et al. Trends of cost and mortality of patients on haemodialysis with end stage renal disease. Nephrology (Carlton). 2015;20:243–9.CrossRefGoogle Scholar
  32. 32.
    Scribner BH. A personalized history of chronic hemodialysis. Am J Kidney Dis. 1990;16:511–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Karkar A. Advances in hemodialysis techniques, vol. 20. INTECH Open Access Publisher; 2013. p. 409–37. Scholar
  34. 34.
    Misra M. Basic mechanisms governing solute and fluid transport in hemodialysis. Hemodial Int. 2008;12:25–8.Google Scholar
  35. 35.
    Ronco C, Ghezzi PM, Brendolan A, Crepaldi C, La Greca G. The haemodialysis system: basic mechanisms of water and solute transport in extracorporeal renal replacement therapies. Nephrol Dial Transplant. 1998;13:3–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Yang A, Lee WY, Hocking K. Survival comparison of daily home hemodialysis vs. conventional in the nursing home setting. Nephrol News Issues. 2015;29:25–7, 30–1.PubMedGoogle Scholar
  37. 37.
    Kaur A, Davenport A. Hemodialysis for infants, children, and adolescents. Hemodial Int. 2014;18:573–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Chaudhary K, Sangha H, Khanna R. Peritoneal dialysis first: rationale. Clin J Am Soc Nephrol. 2011;6:447–56.PubMedCrossRefGoogle Scholar
  39. 39.
    Jaar BG, Coresh J, Plantinga LC, Fink NE, Klag MJ, Levey AS, et al. Comparing the risk for death with peritoneal dialysis and hemodialysis in a national cohort of patients with chronic kidney disease. Ann Intern Med. 2005;143:174–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Kendrick J, Teitelbaum I. Strategies for improving long-term survival in peritoneal dialysis patients. Clin J Am Soc Nephrol. 2010;5:1123–31.PubMedCrossRefGoogle Scholar
  41. 41.
    Genovesi S, Porcu L, Luise MC, Riva H, Nava E, Contaldo G, et al. Sudden death in end stage renal disease: comparing hemodialysis versus peritoneal dialysis. Blood Purif. 2017;44:77–88.PubMedCrossRefGoogle Scholar
  42. 42.
    Himmelfarb J. Hemodialysis complications. Am J Kidney Dis. 2005;45:1122–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Moledina DG, Perry Wilson F. Pharmacologic treatment of common symptoms in dialysis patients: a narrative review. Semin Dial. 2015;28:377–83.PubMedCrossRefGoogle Scholar
  44. 44.
    Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol. 1999;10:1815–23.PubMedGoogle Scholar
  45. 45.
    Costa E, Pereira BJ, Rocha-Pereira P, Rocha S, Reis F, Castro E, et al. Role of prohepcidin, inflammatory markers and iron status in resistance to rhEPO therapy in hemodialysis patients. Am J Nephrol. 2008;28:677–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Stenvinkel P, Alvestrand A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin Dial. 2002;15:329–37.PubMedCrossRefGoogle Scholar
  47. 47.
    Kaysen GA. The microinflammatory state in uremia: causes and potential consequences. J Am Soc Nephrol. 2001;12:1549–57.PubMedGoogle Scholar
  48. 48.
    Himmelfarb J. Linking oxidative stress and inflammation in kidney disease: which is the chicken and which is the egg? Semin Dial. 2004;17:449–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Varela MP, Kimmel PL, Phillips TM, Mishkin GJ, Lew SQ, Bosch JP. Biocompatibility of hemodialysis membranes: interrelations between plasma complement and cytokine levels. Blood Purif. 2001;19:370–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Vaziri ND, Pahl MV, Crum A, Norris K. Effect of uremia on structure and function of immune system. J Ren Nutr. 2012;22:149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ganz T, Nemeth E. Iron balance and the role of hepcidin in chronic kidney disease. Semin Nephrol. 2016;36:87–93.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23:1631–4.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Malyszko J, Malyszko JS, Mysliwiec M. Hyporesponsiveness to erythropoietin therapy in hemodialyzed patients: potential role of prohepcidin, hepcidin, and inflammation. Ren Fail. 2009;31:544–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Costa E, Swinkels DW, Laarakkers CM, Rocha-Pereira P, Rocha S, Reis F, et al. Hepcidin serum levels and resistance to recombinant human erythropoietin therapy in haemodialysis patients. Acta Haematol. 2009;122:226–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Stenvinkel P. The role of inflammation in the anaemia of end-stage renal disease. Nephrol Dial Transplant. 2001;16:36–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Korevaar JC, van Manen JG, Dekker FW, de Waart DR, Boeschoten EW, Krediet RT, et al. Effect of an increase in C-reactive protein level during a hemodialysis session on mortality. J Am Soc Nephrol. 2004;15:2916–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Blidberg K, Palmberg L, Dahlen B, Lantz AS, Larsson K. Chemokine release by neutrophils in chronic obstructive pulmonary disease. Innate Immun. 2012;18:503–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Wright HL, Moots RJ, Bucknall RC, Edwards SW. Neutrophil function in inflammation and inflammatory diseases. Rheumatology. 2010;49:1618–31.PubMedCrossRefGoogle Scholar
  59. 59.
    Cohen G, Raupachova J, Horl WH. The uraemic toxin phenylacetic acid contributes to inflammation by priming polymorphonuclear leucocytes. Nephrol Dial Transplant. 2013;28:421–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Hernandez MR, Galan AM, Cases A, Lopez-Pedret J, Pereira A, Tonda R, et al. Biocompatibility of cellulosic and synthetic membranes assessed by leukocyte activation. Am J Nephrol. 2004;24:235–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Sela S, Shurtz-Swirski R, Cohen-Mazor M, Mazor R, Chezar J, Shapiro G, et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. J Am Soc Nephrol. 2005;16:2431–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Witko-Sarsat V, Gausson V, Nguyen AT, Touam M, Drueke T, Santangelo F, et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 2003;64:82–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Tonelli M, Sacks F, Pfeffer M, Jhangri GS, Curhan G, Cholesterol, et al. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int. 2005;68:237–45.PubMedCrossRefGoogle Scholar
  64. 64.
    Silverstein DM. Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol. 2009;24:1445–52.PubMedCrossRefGoogle Scholar
  65. 65.
    Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006;6:541–50.PubMedCrossRefGoogle Scholar
  66. 66.
    Pham CT. Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol. 2008;40:1317–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 2010;62:726–59.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Groutas WC, Dou D, Alliston KR. Neutrophil elastase inhibitors. Expert Opin Ther Pat. 2011;21:339–54.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sandhaus RA, Turino G. Neutrophil elastase-mediated lung disease. Copd. 2013;10:60–3.PubMedCrossRefGoogle Scholar
  70. 70.
    Polanska B, Augustyniak D, Makulska I, Niemczuk M, Zwolinska D, Jankowski A. Elastase, alpha1-proteinase inhibitor, and interleukin-8 in pre-dialyzed and hemodialyzed patients with chronic kidney disease. Pediatr Int. 2010;52:735–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Fournier BM, Parkos CA. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012;5:354–66.PubMedCrossRefGoogle Scholar
  72. 72.
    Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008;12:361–7.PubMedGoogle Scholar
  73. 73.
    Pereira R, Rocha S, Borges A, Nascimento H, Reis F, Miranda V, et al. Elastase release during the hemodialysis procedure seems to induce changes in red blood cell membrane proteins. Hemodial Int. 2011;15:429–31.PubMedCrossRefGoogle Scholar
  74. 74.
    Girndt M, Heisel O, Kohler H. Influence of dialysis with polyamide vs haemophan haemodialysers on monokines and complement activation during a 4-month long-term study. Nephrol Dial Transplant. 1999;14:676–82.PubMedCrossRefGoogle Scholar
  75. 75.
    Hakim RM. Clinical implications of hemodialysis membrane biocompatibility. Kidney Int. 1993;44:484–94.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee JW, Cho E, Kim MG, Jo SK, Cho WY, Kim HK. Proinflammatory CD14(+)CD16(+) monocytes are associated with vascular stiffness in predialysis patients with chronic kidney disease. Kidney Res Clin Pract. 2013;32:147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pahl MV, Gollapudi S, Sepassi L, Gollapudi P, Elahimehr R, Vaziri ND. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol Dial Transplant. 2010;25:205–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Yoon JW, Gollapudi S, Pahl MV, Vaziri ND. Naive and central memory T-cell lymphopenia in end-stage renal disease. Kidney Int. 2006;70:371–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Massy ZA, Stenvinkel P, Drueke TB. The role of oxidative stress in chronic kidney disease. Semin Dial. 2009;22:405–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Koenig JS, Fischer M, Bulant E, Tiran B, Elmadfa I, Druml W. Antioxidant status in patients on chronic hemodialysis therapy: impact of parenteral selenium supplementation. Wiener Klinische Wochenschrift. 1997;109:13–9.PubMedGoogle Scholar
  81. 81.
    Daschner M, Lenhartz H, Botticher D, Schaefer F, Wollschlager M, Mehls O, et al. Influence of dialysis on plasma lipid peroxidation products and antioxidant levels. Kidney Int. 1996;50:1268–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Rocha-Pereira P, Santos-Silva A, Rebelo I, Figneiredo A, Quintanilha A, Teixeira F. Erythrocyte damage in mild and severe psoriasis. Br J Dermatol. 2004;150:232–44.PubMedCrossRefGoogle Scholar
  83. 83.
    Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev. 2013;2013:301982.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pedruzzi LM, Stockler-Pinto MB, Leite M Jr, Mafra D. Nrf2-keap1 system versus NF-kappaB: the good and the evil in chronic kidney disease? Biochimie. 2012;94:2461–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, et al. NF-kappaB in renal inflammation. J Am Soc Nephrol. 2010;21:1254–62.PubMedCrossRefGoogle Scholar
  86. 86.
    Annuk M, Soveri I, Zilmer M, Lind L, Hulthe J, Fellstrom B. Endothelial function, CRP and oxidative stress in chronic kidney disease. J Nephrol. 2005;18:721–6.PubMedGoogle Scholar
  87. 87.
    Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. 2008:S4–S9.Google Scholar
  88. 88.
    Liakopoulos V, Roumeliotis S, Gorny X, Dounousi E, Mertens PR. Oxidative stress in hemodialysis patients: a review of the literature. Oxid Med Cell Longev. 2017;2017:3081856.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A. Oxidative stress and reactive oxygen species. Contrib Nephrol. 2005;149:240–60.PubMedCrossRefGoogle Scholar
  90. 90.
    Cattaneo D, Remuzzi G. Lipid oxidative stress and the anti-inflammatory properties of statins and ACE inhibitors. J Ren Nutr. 2005;15:71–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Merello Godino JI, Rentero R, Orlandini G, Marcelli D, Ronco C. Results from EuCliD (European Clinical Dialysis Database): impact of shifting treatment modality. Int J Artif Organs. 2002;25:1049–60.PubMedCrossRefGoogle Scholar
  92. 92.
    Oshvandi K, Kavyannejad R, Borzuo SR, Gholyaf M. High-flux and low-flux membranes: efficacy in hemodialysis. Nurs Midwifery Stud. 2014;3:e21764.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Ward RA. Do clinical outcomes in chronic hemodialysis depend on the choice of a dialyzer? Semin Dial. 2011;24:65–71.PubMedCrossRefGoogle Scholar
  94. 94.
    Debska-Slizien A, Malgorzewicz S, Dudziak M, Ksiazek A, Sulowicz W, Grzeszczak W, et al. Cardiovascular risk in patients undergoing maintenance hemodialysis with Helixone(R) membrane: a multicenter randomized study. Pol Arch Med Wewn. 2014;124:593–8.PubMedGoogle Scholar
  95. 95.
    Aucella F, Gesuete A, Vigilante M, Prencipe M. Adsorption dialysis: from physical principles to clinical applications. Blood Purif. 2013;35:42–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Sakai K, Matsuda M. Solute removal efficiency and biocompatibility of the high-performance membrane—from engineering points of view. Contrib Nephrol. 2011;173:11–22.PubMedCrossRefGoogle Scholar
  97. 97.
    MacLeod A, Daly C, Khan I, Vale L, Campbell M, Wallace S, et al. Comparison of cellulose, modified cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst Rev. 2005;20:CD003234.Google Scholar
  98. 98.
    Boure T, Vanholder R. Which dialyser membrane to choose? Nephrol Dial Transplant. 2004;19:293–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Horl WH. Hemodialysis membranes: interleukins, biocompatibility, and middle molecules. J Am Soc Nephrol. 2002;13:62–71.Google Scholar
  100. 100.
    Cheung AK, Parker CJ, Wilcox L, Janatova J. Activation of the alternative pathway of complement by cellulosic hemodialysis membranes. Kidney Int. 1989;36:257–65.PubMedCrossRefGoogle Scholar
  101. 101.
    Jaber BL, Cendoroglo M, Balakrishnan VS, Perianayagam MC, Karsou SA, Ruthazer R, et al. Impact of dialyzer membrane selection on cellular responses in acute renal failure: a crossover study. Kidney Int. 2000;57:2107–16.PubMedCrossRefGoogle Scholar
  102. 102.
    Jacob AI, Gavellas G, Zarco R, Perez G, Bourgoignie JJ. Leukopenia, hypoxia, and complement function with different hemodialysis membranes. Kidney Int. 1980;18:505–9.PubMedCrossRefGoogle Scholar
  103. 103.
    Chenoweth DE. Complement activation during hemodialysis: clinical observations, proposed mechanisms, and theoretical implications. Artif Organs. 1984;8:281–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Carracedo J, Ramirez R, Madueno JA, Soriano S, Rodriguez-Benot A, Rodriguez M, et al. Cell apoptosis and hemodialysis-induced inflammation. Kidney Int Suppl. 2002;61:89–93.CrossRefGoogle Scholar
  105. 105.
    Clark WR, Hamburger RJ, Lysaght MJ. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 1999;56:2005–15.PubMedCrossRefGoogle Scholar
  106. 106.
    Schaefer RM, Horl WH, Kokot K, Heidland A. Enhanced biocompatibility with a new cellulosic membrane: cuprophan versus hemophan. Blood Purif. 1987;5:262–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Hoenich NA, Woffindin C, Stamp S, Roberts SJ, Turnbull J. Synthetically modified cellulose: an alternative to synthetic membranes for use in haemodialysis? Biomaterials. 1997;18:1299–303.PubMedCrossRefGoogle Scholar
  108. 108.
    Bowry SK, Rintelen TH. Synthetically modified cellulose (SMC): a cellulosic hemodialysis membrane with minimized complement activation. ASAIO J. 1998;44:M579-83.PubMedCrossRefGoogle Scholar
  109. 109.
    Subramanian S, Venkataraman R, Kellum JA. Influence of dialysis membranes on outcomes in acute renal failure: a meta-analysis. Kidney Int. 2002;62:1819–23.PubMedCrossRefGoogle Scholar
  110. 110.
    DeAngelis RA, Reis ES, Ricklin D, Lambris JD. Targeted complement inhibition as a promising strategy for preventing inflammatory complications in hemodialysis. Immunobiology. 2012;217:1097–105.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Sakai K. Dialysis membranes for blood purification. Front Med Biol Eng. 2000;10:117–29.PubMedCrossRefGoogle Scholar
  112. 112.
    Hakim RM, Held PJ, Stannard DC, Wolfe RA, Port FK, Daugirdas JT, et al. Effect of the dialysis membrane on mortality of chronic hemodialysis patients. Kidney Int. 1996;50:566–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Jaber BL, Lau J, Schmid CH, Karsou SA, Levey AS, Pereira BJ. Effect of biocompatibility of hemodialysis membranes on mortality in acute renal failure: a meta-analysis. Clin Nephrol. 2002;57:274–82.PubMedCrossRefGoogle Scholar
  114. 114.
    Linnenweber S, Lonnemann G. Effects of dialyzer membrane on interleukin-1beta (IL-1beta) and IL-1beta-converting enzyme in mononuclear cells. Kidney Int Suppl. 2001;78:282-5.Google Scholar
  115. 115.
    Itoh S, Susuki C, Tsuji T. Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. J Biomed Mater Res A. 2006;77:294–303.PubMedCrossRefGoogle Scholar
  116. 116.
    Nakano A. Ethylene vinyl alcohol co-polymer as a high-performance membrane: an EVOH membrane with excellent biocompatibility. Contrib Nephrol. 2011;173:164–71.PubMedCrossRefGoogle Scholar
  117. 117.
    Matsumoto Y, Mukai M, Arihara K, Saito T, Kumagai H. Ethylene-vinyl alcohol copolymer dialyzer membrane reduces protein oxidation in hemodialysis patients. Ren Fail. 2011;33:382–7.PubMedCrossRefGoogle Scholar
  118. 118.
    Bowry SK, Gatti E, Vienken J. Contribution of polysulfone membranes to the success of convective dialysis therapies. Contrib Nephrol. 2011;173:110–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Walker RJ, Sutherland WH, De Jong SA. Effect of changing from a cellulose acetate to a polysulphone dialysis membrane on protein oxidation and inflammation markers. Clin Nephrol. 2004;61:198–206.PubMedCrossRefGoogle Scholar
  120. 120.
    Gastaldello K, Melot C, Kahn RJ, Vanherweghem JL, Vincent JL, Tielemans C. Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrol Dial Transplant. 2000;15:224–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Abe M, Hamano T, Wada A, Nakai S, Masakane I. High-performance membrane dialyzers and mortality in hemodialysis patients: a 2-year cohort study from the annual survey of the Japanese renal data registry. Am J Nephrol. 2017;46:82–92.PubMedCrossRefGoogle Scholar
  122. 122.
    Piroddi M, Pilolli F, Aritomi M, Galli F. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes. Am J Nephrol. 2012;35:559–72.PubMedCrossRefGoogle Scholar
  123. 123.
    D’Arrigo G, Baggetta R, Tripepi G, Galli F, Bolignano D. Effects of vitamin E-coated versus conventional membranes in chronic hemodialysis patients: a systematic review and meta-analysis. Blood Purif. 2017;43:101–22.PubMedCrossRefGoogle Scholar
  124. 124.
    Coombes JS, Fassett RG. Antioxidant therapy in hemodialysis patients: a systematic review. Kidney Int. 2012;81:233–46.PubMedCrossRefGoogle Scholar
  125. 125.
    Ahmadi A, Mazooji N, Roozbeh J, Mazloom Z, Hasanzade J. Effect of alpha-lipoic acid and vitamin E supplementation on oxidative stress, inflammation, and malnutrition in hemodialysis patients. Iran J Kidney Dis. 2013;7:461–7.PubMedGoogle Scholar
  126. 126.
    Daud ZA, Tubie B, Sheyman M, Osia R, Adams J, Tubie S, et al. Vitamin E tocotrienol supplementation improves lipid profiles in chronic hemodialysis patients. Vasc Health Risk Manag. 2013;9:747–61.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Bhogade RB, Suryakar AN, Joshi NG, Patil RY. Effect of vitamin E supplementation on oxidative stress in hemodialysis patients. Indian J Clin Biochem. 2008;23:233–7.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Roob JM, Khoschsorur G, Tiran A, Horina JH, Holzer H, Winklhofer-Roob BM. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol. 2000;11:539–49.PubMedGoogle Scholar
  129. 129.
    Galli F, Varga Z, Balla J, Ferraro B, Canestrari F, Floridi A, et al. Vitamin E, lipid profile, and peroxidation in hemodialysis patients. Kidney Int Suppl. 2001;78:148-54.Google Scholar
  130. 130.
    Mafra D, Santos FR, Lobo JC, de Mattos Grosso D, Barreira AL, Velarde LG, et al. Alpha-tocopherol supplementation decreases electronegative low-density lipoprotein concentration [LDL(-)] in haemodialysis patients. Nephrol Dial Transplant. 2009;24:1587–92.PubMedCrossRefGoogle Scholar
  131. 131.
    Takouli L, Hadjiyannakos D, Metaxaki P, Sideris V, Filiopoulos V, Anogiati A, et al. Vitamin E-coated cellulose acetate dialysis membrane: long-term effect on inflammation and oxidative stress. Ren Fail. 2010;32:287–93.PubMedCrossRefGoogle Scholar
  132. 132.
    Yang SK, Xiao L, Xu B, Xu XX, Liu FY, Sun L. Effects of vitamin E-coated dialyzer on oxidative stress and inflammation status in hemodialysis patients: a systematic review and meta-analysis. Ren Fail. 2014;36:722–31.PubMedCrossRefGoogle Scholar
  133. 133.
    Kirmizis D, Papagianni A, Belechri AM, Memmos D. Effects of vitamin E-coated membrane dialyser on markers of oxidative stress and inflammation in patients on chronic haemodialysis. Nephrol Dial Transplant. 2011;26:2296–301.PubMedCrossRefGoogle Scholar
  134. 134.
    Panichi V, Rosati A, Paoletti S, Ferrandello P, Migliori M, Beati S, et al. A vitamin E-coated polysulfone membrane reduces serum levels of inflammatory markers and resistance to erythropoietin-stimulating agents in hemodialysis patients: results of a randomized cross-over multicenter trial. Blood Purif. 2011;32:7–14.PubMedCrossRefGoogle Scholar
  135. 135.
    Sasaki M. Development of vitamin E-modified polysulfone membrane dialyzers. J Artif Organs. 2006;9:50–60.PubMedCrossRefGoogle Scholar
  136. 136.
    Clermont G, Lecour S, Cabanne JF, Motte G, Guilland JC, Chevet D, et al. Vitamin E-coated dialyzer reduces oxidative stress in hemodialysis patients. Free Radic Biol Med. 2001;31:233–41.PubMedCrossRefGoogle Scholar
  137. 137.
    Mandolfo S, Corradi B, Bucci R, Farina M, Pilolli F, Galli F. Evaluation of the impact of a new synthetic vitamin E-bonded membrane on anemia and rHuEPO requirement in ESRD patients with central venous catheters: a pilot study. Int Urol Nephrol. 2012;44:1493–500.PubMedCrossRefGoogle Scholar
  138. 138.
    Locatelli F, Andrulli S, Vigano SM, Concetti M, Urbini S, Giacchino F, et al. Evaluation of the impact of a new synthetic vitamin E-bonded membrane on the hypo-responsiveness to the erythropoietin therapy in hemodialysis patients: a multicenter study. Blood Purif. 2017;43:338–45.PubMedCrossRefGoogle Scholar
  139. 139.
    Sanaka T, Mochizuki T, Kinugasa E, Kusano E, Ohwada S, Kuno T, et al. Randomized controlled open-label trial of vitamin E-bonded polysulfone dialyzer and erythropoiesis-stimulating agent response. Clin J Am Soc Nephrol. 2013;8:969–78.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Morena M, Gausson V, Mothu N, Bouchet JL, Chanas M, Grandvuillemin M, et al. Regional variations of low-density lipoprotein oxidizability in hemodialysis patients may explain discrepancies in interventional therapy on oxidative profile. Blood Purif. 2008;26:300–10.PubMedCrossRefGoogle Scholar
  141. 141.
    Khabbazi T, Mahdavi R, Safa J, Pour-Abdollahi P. Effects of alpha-lipoic acid supplementation on inflammation, oxidative stress, and serum lipid profile levels in patients with end-stage renal disease on hemodialysis. J Ren Nutr. 2012;22:244–50.PubMedCrossRefGoogle Scholar
  142. 142.
    Mahlicli FY, Altinkaya SA. Immobilization of alpha lipoic acid onto polysulfone membranes to suppress hemodialysis induced oxidative stress. J Membr Sci. 2014;449:27–37.CrossRefGoogle Scholar
  143. 143.
    Kohira S, Oka N, Inoue N, Itatani K, Hanayama N, Kitamura T, et al. Effect of the neutrophil elastase inhibitor sivelestat on perioperative inflammatory response after pediatric heart surgery with cardiopulmonary bypass: a prospective randomized study. Artif Organs. 2013;37:1027–33.PubMedCrossRefGoogle Scholar
  144. 144.
    Stockley R, De Soyza A, Gunawardena K, Perrett J, Forsman-Semb K, Entwistle N, et al. Phase II study of a neutrophil elastase inhibitor (AZD9668) in patients with bronchiectasis. Respir Med. 2013;107:524–33.PubMedCrossRefGoogle Scholar
  145. 145.
    Grano V, Tasco G, Casadio R, Diano N, Portaccio M, Rossi S, et al. Reduction of active elastase concentration by means of immobilized inhibitors: a novel therapeutic approach. Biotechnol Prog. 2004;20:968–74.PubMedCrossRefGoogle Scholar
  146. 146.
    Wetmore JB, Gilbertson DT, Liu J, Collins AJ. Improving outcomes in patients receiving dialysis: the peer kidney care initiative. Clin J Am Soc Nephrol. 2016;11:1297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Nakatan T, Takemoto Y, Tsuchida AK. The effect of vitamin E-bonded dialyzer membrane on red blood cell survival in hemodialyzed patients. Artif Organs. 2003;27:214–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Girndt M, Fiedler R, Martus P, Pawlak M, Storr M, Bohler T, et al. High cut-off dialysis in chronic haemodialysis patients. Eur J Clin Investig. 2015;45:1333–40.CrossRefGoogle Scholar
  149. 149.
    Kneis C, Beck W, Boenisch O, Klefisch F, Deppisch R, Zickler D, et al. Elimination of middle-sized uremic solutes with high-flux and high-cut-off membranes: a randomized in vivo study. Blood Purif. 2013;36:287–94.PubMedCrossRefGoogle Scholar
  150. 150.
    Zickler D, Schindler R, Willy K, Martus P, Pawlak M, Storr M, et al. Medium cut-off (MCO) membranes reduce inflammation in chronic dialysis patients-a randomized controlled clinical trial. PLoS One. 2017;12:e0169024.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Uda S, Mizobuchi M, Akizawa T. Biocompatible characteristics of high-performance membranes. Contrib Nephrol. 2011;173:23–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Nahar N, Shah H, Siu J, Colvin R, Bhaskaran M, Ranjan R, et al. Dialysis membrane-induced neutrophil apoptosis is mediated through free radicals. Clin Nephrol. 2001;56:52–9.PubMedGoogle Scholar
  153. 153.
    Grooteman MP, Nube MJ, van Limbeek J, van Houte AJ, Daha MR, van Geelen JA. Biocompatibility and performance of a modified cellulosic and a synthetic high flux dialyzer. A randomized crossover comparison between cellulose triacetate and polysulphon. ASAIO J. 1995;41:215–20.PubMedCrossRefGoogle Scholar
  154. 154.
    Kreusser W, Reiermann S, Vogelbusch G, Bartual J, Schulze-Lohoff E. Effect of different synthetic membranes on laboratory parameters and survival in chronic haemodialysis patients. NDT Plus. 2010;3:i12–9.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Nensel U, Rockel A, Hillenbrand T, Bartel J. Dialyzer permeability for low-molecular-weight proteins. Comparison between polysulfone, polyamide and cuprammonium-rayon dialyzers. Blood Purif. 1994;12:128–34.PubMedCrossRefGoogle Scholar
  156. 156.
    Horl WH, Riegel W, Schollmeyer P. Plasma levels of main granulocyte components in patients dialyzed with polycarbonate and cuprophan membranes. Nephron. 1987;45:272–6.PubMedCrossRefGoogle Scholar
  157. 157.
    Schindler R, Boenisch O, Fischer C, Frei U. Effect of the hemodialysis membrane on the inflammatory reaction in vivo. Clin Nephrol. 2000;53:452–9.PubMedGoogle Scholar
  158. 158.
    Henderson LW, Chenoweth D. Biocompatibility of artificial organs: an overview. Blood Purif. 1987;5:100–11.PubMedCrossRefGoogle Scholar
  159. 159.
    Lornoy W, Becaus I, Billiouw JM, Sierens L, van Malderen P. Remarkable removal of beta-2-microglobulin by on-line hemodiafiltration. Am J Nephrol. 1998;18:105–8.PubMedCrossRefGoogle Scholar
  160. 160.
    Ward RA, Ouseph R, McLeish KR. Effects of high-flux hemodialysis on oxidant stress. Kidney Int. 2003;63:353–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Sirolli V, Ballone E, Di Stante S, Amoroso L, Bonomini M. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane. Int J Artif Organs. 2002;25:529–37.PubMedCrossRefGoogle Scholar
  162. 162.
    Singh NP, Bansal R, Thakur A, Kohli R, Bansal RC, Agarwal SK. Effect of membrane composition on cytokine production and clinical symptoms during hemodialysis: a crossover study. Ren Fail. 2003;25:419–30.PubMedCrossRefGoogle Scholar
  163. 163.
    Schaefer RM, Gilge U, Goehl H, Heidland A. Evaluation of a new polyamide membrane (Polyflux 130) in high-flux dialysis. Blood Purif. 1990;8:23–31.PubMedCrossRefGoogle Scholar
  164. 164.
    Ebo DG, Bosmans JL, Couttenye MM, Stevens WJ. Haemodialysis-associated anaphylactic and anaphylactoid reactions. Allergy. 2006;61:211–20.PubMedCrossRefGoogle Scholar
  165. 165.
    Cheung AK, Henderson LW. Effects of complement activation by hemodialysis membranes. Am J Nephrol. 1986;6:81–91.PubMedCrossRefGoogle Scholar
  166. 166.
    Irfan M, Idris A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification techniques. Mater Sci Eng C Mater Biol Appl. 2015;56:574–92.PubMedCrossRefGoogle Scholar
  167. 167.
    Thomas M, Moriyama K, Ledebo I. AN69: Evolution of the world's first high permeability membrane. Contrib Nephrol. 2011;173:119–29.PubMedCrossRefGoogle Scholar
  168. 168.
    Horl WH, Steinhauer HB, Schollmeyer P. Plasma levels of granulocyte elastase during hemodialysis: effects of different dialyzer membranes. Kidney Int. 1985;28:791–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int. 1990;38:982–4.PubMedCrossRefGoogle Scholar
  170. 170.
    Chenoweth DE, Henderson LW. Complement activation during hemodialysis: laboratory evaluation of hemodialyzers. Artif Organs. 1987;11:155–62.PubMedCrossRefGoogle Scholar
  171. 171.
    Campistol JM, Torregrosa JV, Ponz E, Fenollosa B. Beta(2)-microglobulin removal by hemodialysis with polymethylmethacrylate membranes. Contrib Nephrol. 1999;125:76–85.PubMedCrossRefGoogle Scholar
  172. 172.
    Aoike I. Long-term clinical experience with PMMA membrane. Contrib Nephrol. 1999;125:205–12.PubMedCrossRefGoogle Scholar
  173. 173.
    Wegmuller E, Montandon A, Nydegger U, Descoeudres C. Biocompatibility of different hemodialysis membranes: activation of complement and leukopenia. Int J Artif Organs. 1986;9:85–92.PubMedGoogle Scholar
  174. 174.
    Igoshi T, Tomisawa N, Hori Y, Jinbo Y. Polyester polymer alloy as a high-performance membrane. Contrib Nephrol. 2011;173:148–55.PubMedCrossRefGoogle Scholar
  175. 175.
    Stein G, Gunther K, Sperschneider H, Carlsohn H, Huller M, Schubert K, et al. Clinical evaluation of a new dialyzer, FLX-12 GW, with a polyester-polymer alloy membrane. Artif Organs. 1993;17:339–45.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Society for Artificial Organs 2018

Authors and Affiliations

  • Michaela Kohlová
    • 1
    • 2
  • Célia Gomes Amorim
    • 2
  • Alberto Araújo
    • 2
  • Alice Santos-Silva
    • 3
    Email author
  • Petr Solich
    • 1
  • Maria Conceição B. S. M. Montenegro
    • 2
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
  2. 2.Department of Chemical Sciences, Faculty of Pharmacy, LAQV-REQUIMTEUniversity of PortoPortoPortugal
  3. 3.Department of Biological Sciences, Faculty of Pharmacy, UCIBIO-REQUIMTEUniversity of PortoPortoPortugal

Personalised recommendations