Advertisement

Deep learned Inter-Channel Colored Texture Pattern: a new chromatic-texture descriptor

  • I. Jeena JacobEmail author
  • K. G. Srinivasagan
  • P. Ebby Darney
  • K. Jayapriya
Theoretical advances
  • 21 Downloads

Abstract

Texture is a dominant tool for feature extraction. Incorporation of inter-channel chromatic information along with the texture feature will improve the accuracy of feature extraction. This paper provides deep learned Inter-Channel Colored Texture Pattern which gives the inter-channel chromatic texture information of an image. The information is extracted individually from the co-occurrent pixel values of various channels. It affords the unique channel-wise information and its relation with neighboring pixel information of opponent space. Deep learning with convolutional neural network is applied for learning the feature based on color and texture. The experiments for content-based image retrieval are carried out on three different databases which vary in nature: CIFAR-10 dataset (DB1) (Krizhevsky in Learning multiple layers of features from tiny images, University of Toronto, 2009), Corel database (DB2) (Corel 1000 and Corel 10000 image database, http://wang.ist.psu.edu/docs/related.shtml) and Facescrub dataset (DB3) (Ng and Winkler in 2014 IEEE international conference on image processing (ICIP), pp 343–347, 2014). Facescrub dataset is used for face recognition. The experimental analysis by applying this descriptor provides considerable improvement from the previous works for content-based image retrieval and face recognition.

Keywords

Content-based image retrieval ICCTP Information retrieval Texture descriptor 

Notes

Acknowledgments

We extend our gratitude to Dr. S. Arulkrishnamoorthy for his linguistic consultancy. Also, we would like to thank the anonymous reviewers for their valuable comments and suggestions.

References

  1. 1.
    Krizhevsky A (2009) Learning multiple layers of features from tiny images. Technical report 7(4), University of TorontoGoogle Scholar
  2. 2.
    Corel 1000 and Corel 10000 image database. http://wang.ist.psu.edu/docs/related.shtml. Accessed 15 Feb 2016
  3. 3.
    Ng HW, Winkler S (2014) A data-driven approach to cleaning large face datasets. In: 2014 IEEE international conference on image processing (ICIP), pp 343–347Google Scholar
  4. 4.
    Su C-H, Chiu H-S, Hsieh T-M (2011) An efficient image retrieval based on HSV color space. In: International conference on electrical and control engineering, Yichang. IEEE, pp 5746–5749. http://dx.doi.org/10.1109/ICECENG.2011.6058026
  5. 5.
    Ma J (2009) Content-based image retrieval with HSV color space and texture features. In: International conference on web information systems and mining, pp 61–63. http://dx.doi.org/10.1109/WISM.2009.20
  6. 6.
    Scott GJ, Mathew Klaric M, Curt Davis D (2011) Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases. IEEE Trans Geosci Remote Sensing 49(5):1603–1616Google Scholar
  7. 7.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Machine Intell 24(4):509–522Google Scholar
  8. 8.
    Smith JR, Chang SF (1996) Automated binary texture feature sets for image retrieval. In: Proceedings of IEEE international conference on acoustics, speech and signal processing, Columbia University, New York, pp. 2239–2242Google Scholar
  9. 9.
    Moghaddam HA, Saadatmand Tarzjan M (2006) Gabor wavelet correlogram algorithm for image indexing and retrieval. In: 18th international conference on pattern recognition. KN Toosi University of Technology, Tehran, Iran, pp 925–928Google Scholar
  10. 10.
    Han J, Ma K (2002) Fuzzy color histogram and its use in color image retrieval. IEEE Trans Image Process 11:944–952Google Scholar
  11. 11.
    Pass G, Zabih R, Miller J (1997) Comparing images using color coherence vectors. In: Proceedings of 4th ACM multimedia conference, Boston, MA, USA, pp 65–73Google Scholar
  12. 12.
    Huang J, Kumar SR, Mitra M (1997) Combining supervised learning with color correlograms for content-based image retrieval. In: Proceedings 5th ACM multimedia conference, pp 325–334Google Scholar
  13. 13.
    Huang J, Kumar SR, Mitra M (1997) Image indexing using color correlograms. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 762–768Google Scholar
  14. 14.
    Saad M (2008) Content based image retrieval literature survey. In: EE 381K: multi dimensional digital signal processingGoogle Scholar
  15. 15.
    Vadivel A, Shamik S, Majumdar AK (2007) An integrated color and intensity co-occurrence matrix. Pattern Recognit Lett 28:974–983Google Scholar
  16. 16.
    Van KEA, Gevers T, Snoek M (2010) Evaluating color descriptors for object and scene recognition. IEEE Trans Pattern Anal Mach Intell 32(9):1582–1596Google Scholar
  17. 17.
    Jain A, Vailaya A (1995) Image retrieval using color and shape. Pattern Recogn 29(8):1233–1244Google Scholar
  18. 18.
    Smith JR, Chang F (1995) Automated image retrieval using color and texture. Technical report CU/CTR 408_95_14, Columbia UniversityGoogle Scholar
  19. 19.
    Kokare M, Biswas PK, Chatterji BN (2007) Texture image retrieval using rotated wavelet filters. Pattern Recognit Lett 28:1240–1249Google Scholar
  20. 20.
    Kokare M, Biswas PK, Chatterji BN (2005) Texture image retrieval using new rotated complex wavelet filters. IEEE Trans Syst Man Cybern 33(6):1168–1178Google Scholar
  21. 21.
    Kokare M, Biswas PK, Chatterji BN (2006) Rotation-invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans Syst Man Cybern 36(6):1273–1282Google Scholar
  22. 22.
    Zhang J, Ye L (2010) Series feature aggregation for content-based image retrieval. Comput Electr Eng 36:691–701zbMATHGoogle Scholar
  23. 23.
    Gonde AB, Maheshwari RP, Balasubramanian R (2010) Multi-scale ridgelet transform for content-based image retrieval. In: IEEE international advance computing conference, Patial, India, pp 139–144Google Scholar
  24. 24.
    Çelik T, Tjahjadi T (2011) Multi-scale texture classification and retrieval based on magnitude and phase features of complex wavelet subbands. Comput Electr Eng 37:729–743Google Scholar
  25. 25.
    Wen Y, Zhang K, Li Z, Qiao Y (2016) A discriminative deep feature learning approach for face recognition. In: European conference on computer visionGoogle Scholar
  26. 26.
    Liu H, Wang R, Shan S, Chen X (2016) Deep supervised hashing for fast image retrieval. In: IEEE conference on computer vision and pattern recognitionGoogle Scholar
  27. 27.
    Paulin M, Douze M, Harchaoui Z, Mairal J, Perronin F, Schmid C (2015) Local convolutional features with unsupervised training for image retrieval. In: International conference on computer visionGoogle Scholar
  28. 28.
    Babenko A, Lempitsky V (2015) Image retrieval using scene graphs. In: International conference on computer visionGoogle Scholar
  29. 29.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110MathSciNetGoogle Scholar
  30. 30.
    Soyel H, Demirel H (2012) Localized discriminative scale invariant feature transform based facial expression recognition. Comput Electr Eng 38(5):1299–1309Google Scholar
  31. 31.
    Ke Y, Sukthankar K (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 506–513Google Scholar
  32. 32.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630Google Scholar
  33. 33.
    Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: speeded up robust features. Comput Vis Image Underst 110(3):346–359Google Scholar
  34. 34.
    Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distribution. Pattern Recognit 29:51–59Google Scholar
  35. 35.
    Heikkila M, Pietikainen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436zbMATHGoogle Scholar
  36. 36.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987zbMATHGoogle Scholar
  37. 37.
    Ojala T, Pietikainen M (1999) Unsupervised texture segmentation using feature distributions. Pattern Recogn 32(3):477–486Google Scholar
  38. 38.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28:2037–2041zbMATHGoogle Scholar
  39. 39.
    Shan C, Gong S, McOwan PW (2005) Robust facial expression recognition using local binary patterns. In: Proceedings of international conference on image processing, pp 370–373Google Scholar
  40. 40.
    Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance with global matching. Pattern Recognit 43(3):706–719zbMATHGoogle Scholar
  41. 41.
    Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118MathSciNetzbMATHGoogle Scholar
  42. 42.
    Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zhu C, Bichot C-E, Chen L (2013) Color orthogonal local binary patterns combination for image region description. Technical reportGoogle Scholar
  44. 44.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650MathSciNetzbMATHGoogle Scholar
  45. 45.
    Zhang B, Gao Y, Zhao S (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetzbMATHGoogle Scholar
  46. 46.
    Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886MathSciNetzbMATHGoogle Scholar
  47. 47.
    Jeena Jacob I, Srinivasagan KG, Jayapriya K (2014) Local oppugnant color texture pattern for image retrieval system. Pattern Recognit Lett 42:72–78Google Scholar
  48. 48.
    Levine M (1985) Vision in man and machine. McGraw-Hill, New YorkGoogle Scholar
  49. 49.
    Kaiser PK, Boynton RM (1996) Human color vision. Optical Society of America, WashingtonGoogle Scholar
  50. 50.
    Zhou N, Cheung WK, Qiu G, Xue X (2011) A hybrid probabilistic model for unified collaborative and content-based image tagging. IEEE Trans Pattern Anal Mach Intell 33(7):1281–1294Google Scholar
  51. 51.
    Harvey L, Gervais M (1981) Internal representation of visual texture as the basis for judgment of similarity. J Exp Psychol Hum Percept Perform 7:741–753Google Scholar
  52. 52.
    Jain A, Healey G (1998) A multiscale representation including opponent color features for texture recognition. IEEE Trans Image Process 7(1):124–128Google Scholar
  53. 53.
    Subrahmanyam M, Jonathan Wu QM, Maheshwari RP, Balasubramanian R (2013) Modified color motif co-occurrence matrix for image indexing and retrieval. Comput Electr Eng 39:762–774Google Scholar
  54. 54.
    Wang H, Cai Y, Zhang Y, Pan H, Lv W, Han H (2015) Deep learning for image retrieval: what works and what doesn’t. In: IEEE 15th international conference on data mining workshopsGoogle Scholar
  55. 55.
    Smeulders M, Worring S, Santini Gupta A, Jain R (2000) Content based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380Google Scholar
  56. 56.
    Hirata K, Kato T (1992) Query by visual example—content-based image retrieval. In: Proceedings of third international conference on extending database technology, EDBT92, pp 56–71Google Scholar
  57. 57.
    Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkhani M, Hafner J, Lee D, Petkovic D, Steele D, Yanker P (1995) Query by image and video content: the QBIC system. IEEE Comput Mag 28(9):23–32Google Scholar
  58. 58.
    Barber R, Niblack W, Flickner M, Glasman E, Petkovic D, Yanker P, Faloutsos C, Taubin G (1993) The QBIC Project: querying images by content using color, texture, and shape. In: Proceedings of the IS&T SPIE storage and retrieval for image and video databases, San Jose, CA, USA, pp 173–187Google Scholar
  59. 59.
    Pentland A, Picard RW, Sciaroff S (1996) Photobook: content-based manipulation of image databases. Int J Comput Vis 18(3):233–254Google Scholar
  60. 60.
    Bach JR, Fuller A, Gupta A, Hampapur B, Horowitz R, Humphrey R, Jam Shu CF (1996) The Virage search engine: an open framework for image management. In: Proceedings of the SPIE storage and retrieval for still image and video databases IV, pp 77–87Google Scholar
  61. 61.
    Smith JR, Chang SF (1997) Querying by color regions using the VisualSEEk content-based visual query system. In: Maybury MT (ed) Intelligent multimedia information retrieval. AAAI Press, Menlo Park, pp 159–173Google Scholar
  62. 62.
    Smith JR, Chang SF (1997) An image and video search engine for the world-wide web. In: Proceedings of the SPIE storage and retrieval for image and video databases, vol 3022, San Jose, CA, USA, pp 85–95Google Scholar
  63. 63.
    Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038Google Scholar
  64. 64.
    Kompatsiaris I, Triantafillou E, Strintzis MG (2001) Region-based color image indexing and retrieval. In: Proceedings of the international conference on image processing (ICIP2001), Thessaloniki, Greece, pp 658–661Google Scholar
  65. 65.
    Scarlogg S, Taycher L, La Cascia M (1997) Image Rover: a content-based image browser for the World Wide Web. In: Proceedings of the IEEE workshop on content-based access of image and video libraries, Puerto Rico, pp 10–18Google Scholar
  66. 66.
    Swain M, Frankel C, Athitsos V (1996) WebSeer: an image search engine for the world wide web. Technical report tr-96-14, University of ChicagoGoogle Scholar
  67. 67.
    Ma WY, Manjunath BS (1997) Netra: a toolbox for navigating large image databases. In: Proceedings of the IEEE international conference on image processing, Washington, DC, USA, pp 568–571Google Scholar
  68. 68.
    Ma WY, Manjunath BS (1999) NeTra: a toolbox for navigating large image databases. Multimed Syst 7(3):184–198Google Scholar
  69. 69.
    Koskela M (2003) Interactive image retrieval using self-organizing maps. Ph.D. thesis, Helsinki University of Technology, Espoo, FinlandGoogle Scholar
  70. 70.
    Chen Y, Wang JZ, Krovetz R (2005) CLUE: cluster-based retrieval of images by unsupervised learning. IEEE Trans Image Process 14(8):1187–1201Google Scholar
  71. 71.
    Liu H, Wang R, Shan S, Chen X (2015) Deep supervised hashing for fast image retrieval. In: CVPRGoogle Scholar
  72. 72.
    Wong YW, Seng KP, Ang L-M (2011) Audio-visual recognition system in compression domain. IEEE Trans Circuits Syst Video Technol 21(5):637–646Google Scholar
  73. 73.
    Li SZ, Chu R, Liao SC, Zhang L (2007) Illumination invariant face recognition using near-infrared images. IEEE Trans Pattern Anal Mach Intell 29(4):627–639Google Scholar
  74. 74.
    Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and modeling of faces and gestures, Lecture notes in computer science, vol 4778, pp 168–182Google Scholar
  75. 75.
    Hu W, Li X, Zhang Z, Wang H (2010) Heat kernel based local binary pattern for face representation. IEEE Signal Process Lett 17(3):308–311Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringFrancis Xavier Engineering CollegeTirunelveliIndia
  2. 2.Department of Computer Science and EngineeringNational Engineering CollegeKovilpattiIndia
  3. 3.Department of Electrical and Electronics EngineeringSCAD College of Engineering and TechnologyTirunelveliIndia
  4. 4.Vin SolutionsTirunelveliIndia

Personalised recommendations