Pattern Analysis and Applications

, Volume 21, Issue 4, pp 1167–1183 | Cite as

Pattern matching for industrial object recognition using geometry-based vector mapping descriptors

  • Oung Tak You
  • Dong Sung Pae
  • Sung Hee Kim
  • Kyeong Eun Kim
  • Myo Taeg LimEmail author
  • Tae Koo KangEmail author
Industrial and Commercial Application


Object recognition has always been a troublesome issue for computer vision. Despite continuous researches, it still remains a challenge to define features, match the corresponding features, and develop accuracy and precision concurrently while considering computational speed and robustness at the same time. In this paper, we propose a novel feature matching method called the vector mapping descriptor (VMD) to overcome existing issues. We implement sub-pixel units for edge detection to improve the accuracy of invariant features, after which sub-pixel unit edges are enhanced by least squares error estimation, and more accurate geometric features are extracted from the enhanced sub-pixel unit edges of an object’s geometric shape. We defined two geometric features, namely a circle center and a line intersection, used to construct the VMD, which represents the correlation of features consisting of the Euclidean distance and angle. The geometry-based VMD for pattern matching is proposed to match salient feature points between different images effectively under geometric transformation irrespective of missing or additional feature points. The VMD enabled one-to-one feature matching of corresponding grouped feature points from different images resulting in complete object matching. The proposed matching algorithm was invariant to geometric transformation such as translation, rotation, and scale differences and was also able cope with partial distortion or occlusion. Experiments were conducted with an industrial camera to show that our system can be executed in real time.


Geometric features Vector mapping descriptors Matching Geometric transformation Partial distortion or occlusion 



The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This paper is supported by basic science research program through the National Research Foundation of Korea funded by the Ministry of Education under Grant (NRF-2016R1D1A1B01016071) and also (NRF-2016R1D1A1B03936281).


  1. 1.
    Buhmann JM, Malik J, Perona P (1999) Image recognition: visual grouping, recognition, and learning. Proc Natl Acad Sci 96(25):14203–14204CrossRefGoogle Scholar
  2. 2.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2):91–110MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004, vol 2. CVPR, pp 2Google Scholar
  4. 4.
    Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630CrossRefGoogle Scholar
  5. 5.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  6. 6.
    Horbert E, García GM, Frintrop S, Leibe B (2015) Sequence-level object candidates based on saliency for generic object recognition on mobile systems. In: 2015 IEEE international conference on robotics and automation (ICRA), pp. 127–134Google Scholar
  7. 7.
    Pezzementi Z, Hager GD (2017) Tactile object recognition and localization using spatially-varying appearance. In: Pezzementi Z, Hager GD (eds) Robotics research. Springer, Berlin, pp 201–217Google Scholar
  8. 8.
    Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299CrossRefGoogle Scholar
  9. 9.
    Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522CrossRefGoogle Scholar
  10. 10.
    Yang Z, Cohen FS (1999) Image registration and object recognition using affine invariants and convex hulls. IEEE Trans Image Process 8(7):934–946MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang H, Xu D (2010) A novel geometry based matching method for images with multi objects. In: 2010 8th world congress on intelligent control and automation (WCICA), pp. 1337–1342Google Scholar
  12. 12.
    Caetano TS, Caelli T, Schuurmans D, Barone DAC (2006) Graphical models and point pattern matching. IEEE Trans Pattern Anal Mach Intell 28(10):1646–1663CrossRefGoogle Scholar
  13. 13.
    Zhang D, Lu G (2002) Shape-based image retrieval using generic Fourier descriptor. Sig Process Image Commun 17(10):825–848CrossRefGoogle Scholar
  14. 14.
    Persoon E, Fu KS (1977) Shape discrimination using Fourier descriptors. IEEE Trans Syst Man Cybern 7(3):170–179MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kunttu I, Lepistö L (2007) Shape-based retrieval of industrial surface defects using angular radius Fourier descriptor. IET Image Proc 1(2):231–236CrossRefGoogle Scholar
  16. 16.
    Foroosh H, Zerubia JB, Berthod M (2002) Extension of phase correlation to subpixel registration. IEEE Trans Image Process 11(3):188–200CrossRefGoogle Scholar
  17. 17.
    Guest E, Berry E, Baldock RA, Fidrich M, Smith MA (2001) Robust point correspondence applied to two-and three-dimensional image registration. IEEE Trans Pattern Anal Mach Intell 23(2):165–179CrossRefGoogle Scholar
  18. 18.
    Montesinos P, Gouet V, Deriche R, Pelé D (2000) Matching color uncalibrated images using differential invariants. Image Vis Comput 18(9):659–671CrossRefGoogle Scholar
  19. 19.
    Pluim JP, Maintz JA, Viergever MA (2001) Mutual information matching in multiresolution contexts. Image Vis Comput 19(1):45–52CrossRefGoogle Scholar
  20. 20.
    Suk T, Flusser J (1996) Vertex-based features for recognition of projectively deformed polygons. Pattern Recogn 29(3):361–367CrossRefGoogle Scholar
  21. 21.
    Suk T, Flusser J (2000) Point-based projective invariants. Pattern Recogn 33(2):251–261CrossRefGoogle Scholar
  22. 22.
    Gecer B, Azzopardi G, Petkov N (2017) Color-blob-based COSFIRE filters for object recognition. Image Vis Comput 57:165–174CrossRefGoogle Scholar
  23. 23.
    Lin CC, Tai YC, Lee JJ, Chen YS (2017) A novel point cloud registration using 2D image features. EURASIP J Adv Signal Process 2017(1):5CrossRefGoogle Scholar
  24. 24.
    Asif U, Bennamoun M, Sohel FA (2017) RGB-D object recognition and grasp detection using hierarchical cascaded forests. IEEE Trans Rob 33:547–564CrossRefGoogle Scholar
  25. 25.
    Zhang L, Ji Q (2008, June) Integration of multiple contextual information for image segmentation using a bayesian network. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society Conference on (pp. 1-6)Google Scholar
  26. 26.
    Ferrari V, Fevrier L, Jurie F, Schmid C (2008) Groups of adjacent contour segments for object detection. IEEE Trans Pattern Anal Mach Intell 30(1):36–51CrossRefGoogle Scholar
  27. 27.
    Petrakis EGM, Diplaros A, Milios E (2002) Matching and retrieval of distorted and occluded shapes using dynamic programming. IEEE Trans Pattern Anal Mach Intell 24(11):1501–1516CrossRefGoogle Scholar
  28. 28.
    Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20(9):917–927CrossRefGoogle Scholar
  29. 29.
    Bentoutou Y, Taleb N, El Mezouar MC, Taleb M, Jetto L (2002) An invariant approach for image registration in digital subtraction angiography. Pattern Recogn 35(12):2853–2865zbMATHCrossRefGoogle Scholar
  30. 30.
    Cristian S, Djamel M (2006) (Matrox Electronic System Ltd., USA) Geometric hashing method for model-based recognition of an object. U.S. Patent 7,027,65Google Scholar
  31. 31.
    Karen BS, Ivan AB, Cyril CM, Yian LC (2001) (Cognex Corporation USA), Object image search using sub-models. US Patent 6,324,299Google Scholar
  32. 32.
    Haddad RA, Akansu AN (1991) A class of fast Gaussian binomial filters for speech and image processing. IEEE Trans Signal Process 39(3):723–727CrossRefGoogle Scholar
  33. 33.
    Hong L, Wan Y, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789CrossRefGoogle Scholar
  34. 34.
    Maini R, Aggarwal H (2009) Study and comparison of various image edge detection techniques. Int J Image Process (IJIP) 3(1):1–11Google Scholar
  35. 35.
    Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698CrossRefGoogle Scholar
  36. 36.
    Trujillo-Pino A, Krissian K, Alemán-Flores M, Santana-Cedrés D (2013) Accurate subpixel edge location based on partial area effect. Image Vis Comput 31(1):72–90CrossRefGoogle Scholar
  37. 37.
    Zhang TY, Suen CY (1984) A fast parallel algorithm for thinning digital patterns. Commun ACM 27(3):236–239CrossRefGoogle Scholar
  38. 38.
    Gander W, Golub GH, Strebel R (1994) Least-squares fitting of circles and ellipses. BIT Numer Math 34(4):558–578MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    York D (1968) Least squares fitting of a straight line with correlated errors. Earth Planet Sci Lett 5:320–324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringKorea UniversitySeoulSouth Korea
  2. 2.School of Human Intelligent Robot EngineeringSangmyung UniversityCheonan-SiSouth Korea

Personalised recommendations