Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Single-pixel camera with hole-array disk

  • 25 Accesses

Abstract

A single-pixel camera is composed of optical coding masks, a photo detector, and a computational decoder as the important feature that it requires no image sensor for imaging, and therefore has very simple optical and electrical architectures. The optical coding masks, the implementation of which is a novel point of our research, are composed of holes on a substrate and are arranged on the circumference of a disk to allow mask switching by rotation of the disk. The main features are a simple structure that brings low cost in optics and electronics, no path difference in the mask, and no wavelength dependence except for a dependence on air for wideband spectral imaging. Spectral imaging of a sample composed of color films is demonstrated, and the accuracy of the proposed system is evaluated to make the most of the features.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Takhar, D., Laska, J.N., Wakin, M.B., Duarte, M.F., Baron, D., Sarvotham, S., Kelly, K.F., Baraniuk, R.G.: A new compressive imaging camera architecture using optical-domain compression. Proc. SPIE 6065, 606509 (2006)

  2. 2.

    Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008)

  3. 3.

    Willett, R.M., Marcia, R.F., Nichols, J.M.: Compressed sensing for practical optical imaging systems: a tutorial. Opt. Eng. 50, 72601 (2011)

  4. 4.

    Riza, N.A., Reza, S.A., Marraccini, P.J.: Digital micro-mirror device-based broadband optical image sensor for robust imaging applications. Opt. Commun. 284, 103–111 (2011)

  5. 5.

    Sloane, N.J.A., Harwit, M.: Masks for Hadamard transform optics, and weighing designs. Appl. Opt. 15, 107–114 (1976)

  6. 6.

    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

  7. 7.

    Shapiro, J.H.: Computational ghost imaging. Phys. Rev. 78, 061802(R) (2008)

  8. 8.

    Bromberg, Y., Katz, O., Silberberg, Y.: Ghost imaging with a single detector. Phys. Rev. 79, 053840 (2009)

  9. 9.

    Katz, O., Bromberg, Y., Padgett, M.J.: Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009)

  10. 10.

    Wang, L., Zhao, S.: Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photon. Res. 4, 240–244 (2016)

  11. 11.

    Radwell, N., Mitchell, K.J., Gibson, G.M., Edgar, M.P., Bowman, R., Padgett, M.J.: Single-pixel infrared and visible microscope. Optica 1, 285–289 (2014)

  12. 12.

    Aspden, R.S., Gemmell, N.R., Morris, P.A., Tasca, D.S., Mertens, L., Tanner, M.G., Kirkwood, R.A., Ruggeri, A., Tosi, A., Boyd, R.W., Buller, G.S., Hadfield, R.H., Padgett, M.J.: Photon-sparse microscopy: visible light imaging using infrared illumination. Optica 2, 1024–1052 (2015)

  13. 13.

    Gibson, G.M., Sun, B., Edgar, M.P., Phillips, D.B., Hempler, N., Maker, G.T., Malcolm, G.P.A., Padgett, M.J.: Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 25, 2998–3005 (2017)

  14. 14.

    Shrekenhamer, D., Watts, C.M., Padilla, W.J.: Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. Opt. Express 21, 12507–12518 (2013)

  15. 15.

    Watts, C.M., Shrekenhamer, D., Montoya, J., Lipworth, G., Hunt, J., Sleasman, T., Krishna, S., Smith, D.R., Padilla, W.J.: Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014)

  16. 16.

    Stantchev, R.I., Sun, B., Hornett, S.M., Hobson, P.A., Gibson, G.M., Padgftt, M.J., Hendry, E.: Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci. Adv. 2, e1600190 (2016)

  17. 17.

    Magalhaes, F., Araujo, F.M., Correia, M.V., Abolbashari, M., Farahi, F.: High-resolution hyperspectral single-pixel imaging system based on compressive sensing. Opt. Eng. 51, 071406 (2012)

  18. 18.

    Guo, Q., Chen, H., Weng, Z., Chen, M., Yang, S., Xie, S.: Fast time-lens-based line-scan single-pixel camera with multi-wavelength source. Biomed. Opt. Express 6, 3610–3617 (2015)

  19. 19.

    Jin, S., Hui, W., Liu, B., Ying, C., Liu, D., Ye, Q., Zhou, W., Tian, J.: Extended-field coverage hyperspectral camera based on a single-pixel technique. Appl. Opt. 55, 4808–4813 (2016)

  20. 20.

    Gattinger, P., Kilgus, J., Zorin, I., Langer, G., Nikzad-Langerodi, R., Rankl, C., Gröschl, M., Brandstetter, M.: Broadband near-infrared hyperspectral single pixel imaging for chemical characterization. Opt. Exp. 27, 12666–12672 (2019)

  21. 21.

    Pham, Q.D., Hayasaki, Y.: Optical frequency comb interference profilometry using compressive sensing. Opt. Exp. 21, 19003–19011 (2013)

  22. 22.

    Pham, Q.D., Hayasaki, Y.: Optical frequency comb profilometry using a single-pixel camera composed of digital micromirror devices. Appl. Opt. 54, A39–A44 (2015)

  23. 23.

    Sun, M., Edgar, M.P., Gibson, G.M., Sun, B., Radwell, N., Lamb, R., Padgett, M.J.: Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 7, 12010 (2016)

  24. 24.

    Pham, Q.D., Hayasaki, Y.: Combining phase images measured in the radio frequency and the optical frequency ranges. Opt. Lett. 42, 2062–2065 (2017)

  25. 25.

    Lochocki, B., Gambin, A., Mazanera, S., Irles, E., Tajahuerce, E., Lancis, J., Artal, P.: Single pixel camera ophthalmoscope. Optica 3, 1056–1059 (2016)

  26. 26.

    Clemente, P., Duran, V., Tajahuerce, E., Andres, P., Climent, V., Lancis, J.: Compressive holography with a single-pixel detector. Opt. Lett. 38, 2524–2526 (2013)

  27. 27.

    Ota, K., Hayasaki, Y.: Complex-amplitude single-pixel imaging. Opt. Lett. 43, 3682–3685 (2018)

  28. 28.

    Soldevila, F., Durán, V., Clemente, P., Lancis, J., Tajahuerce, E.: Phase imaging by spatial wavefront sampling. Optica 5, 164–174 (2018)

  29. 29.

    Huynh, N., Zhang, E., Betcke, M., Arridge, S., Beard, P., Cox, B.: Single-pixel optical camera for video rate ultrasonic imaging. Optica 3, 26–29 (2016)

  30. 30.

    Howland, G.A., Lum, D.J., Ware, M.R., Howell, J.C.: Photon counting compressive depth mapping. Opt. Express 21, 23822–23837 (2013)

  31. 31.

    Lawrie, B.J., Pooser, R.C.: Toward real-time quantum imaging with a single pixel camera. Opt. Express 21, 7549–7559 (2013)

  32. 32.

    Howland, G.A., Lum, D.J., Howell, J.C.: Compressive wavefront sensing with weak values. Opt. Express 22, 18870–18880 (2014)

  33. 33.

    Futia, G., Schlup, P., Winters, D.G., Bartels, R.A.: Spatially-chirped modulation imaging of absorption and fluorescent objects on single-element optical detector. Opt. Express 19, 1626–1640 (2011)

  34. 34.

    Fan, K., Suen, J.Y., Padilla, W.J.: Graphene metamaterial spatial light modulator for infrared single pixel imaging. Opt. Express 25, 25318–25325 (2017)

Download references

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number JP17H06102.

Author information

Correspondence to Yoshio Hayasaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayasaki, Y., Sato, R. Single-pixel camera with hole-array disk. Opt Rev (2020). https://doi.org/10.1007/s10043-020-00582-z

Download citation

Keywords

  • Spatial light modulator
  • Single-pixel imaging
  • Computational imaging
  • Hadamard coding