Influence of graphene’s chemical potential on SPR biosensor using ZnO for DNA hybridization

  • Sarika Pal
  • Yogendra Kumar PrajapatiEmail author
  • J. P. Saini
Regular Paper


This article presents an SPR biosensor (Structure: SF10 prism-Au-ZnO-Graphene-PBS solution) to sense DNA hybridization using angular interrogation method at an operating wavelength of 633 nm. Its performance parameters, i.e., sensitivity (S), detection accuracy (DA), and figure of merit (FoM) are evaluated for different values of graphene’s chemical potential at room temperature. Sensitivity (141.9 °/RIU), DA (0.64 Degree−1) and FoM (9.14 RIU−1) are achieved for the proposed SPR biosensor at 0 eV chemical potential of graphene at the room temperature. The maximum sensitivity of 156.33°/RIU is obtained for the proposed SPR biosensor at 1.25 eV graphene’s chemical potential. The present article utilizes biocompatibility, chemical stability, and unique electrical and optical properties of both graphene and ZnO in SPR sensor for DNA hybridization.


Chemical potential DNA hybridization Surface plasmon resonance (SPR) Zinc oxide (ZnO) 



This work is partially supported under Project No. 34/14/10/2017-BRNS/34285 by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India.


  1. 1.
    Hossain, M.B., Rana, M.M.: Graphene coated high sensitive surface plasmon resonance biosensor for sensing DNA hybridization. Sens. Lett. 14, 1–8 (2015)Google Scholar
  2. 2.
    Homola, J., Sinclair, S.Y., Gauglitz, G.: Surface plasmon resonance sensors: review. Sens. Actuators B Chem. 54(1–2), 3–15 (1999)CrossRefGoogle Scholar
  3. 3.
    Song, B., Li, D., Qi, W., Elstner, M., Fan, C., Fang, H.: Graphene on Au(111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem. Phys. Chem. 11, 585–589 (2010)CrossRefGoogle Scholar
  4. 4.
    Verma, A., Prakash, A., Tripathi, R.: Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun. 357, 106–112 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Sharma, A.K., Dominic, A.: Influence of chemical potential on graphene-based SPR sensor’s performance. IEEE Photonics Technol. Lett. 30(1), 95–98 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    Prajapati, Y.K., Srivastava, A.: Effect of BlueP/MoS2 heterostructure and graphene layer on the performance parameter of SPR sensor: theoretical insight. Superlattices Microstruct. 129, 152–162 (2019)ADSCrossRefGoogle Scholar
  7. 7.
    Rahman, M., Anower, M., Hasan, M., Hossain, M., Haque, M.: Design and numerical analysis of highly sensitive Au-MoS2-graphene based hybrid surface plasmon resonance biosensor. Opt. Commun. 396, 36–43 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K., Saini, J.P.: Detection of DNA hybridization using black phosphorus-graphene coated surface plasmon resonance sensor. Appl. Phys. A 124, 394 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121, 523–533 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Agarwal, S., Giri, P., Prajapati, Y.K., Chakrabarti, P.: Effect of surface roughness on the performance of optical SPR sensor for sucrose detection: fabrication, characterization, and simulation study. IEEE Sens. J. 16, 8865–8873 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Tabassum, R., Gupta, B.D.: Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrollidone supported zinc oxide thin films. Analyst 140, 1863–1870 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Duenow, J.N., Gessert, T.A., Wood, D.M., Barnes, T.M., Young, M., To, B., Coutts, T.J.: Transparent conducting zinc oxide thin films doped with aluminum and molybdenum. J. Vac. Sci. Technol. A 25, 955 (2007). CrossRefGoogle Scholar
  13. 13.
    Sharma, R.K., Patel, S., Pargaien, K.C.: Synthesis, characterization and properties of Mn-doped ZnO nanocrystals. Adv. Nat. Sci. 3, 035005 (2012). CrossRefGoogle Scholar
  14. 14.
    Gupta, S.K., Joshi, A., Kaur, M.: Development of gas sensors using ZnO nanostructures. J. Chem. Sci. 122, 57–62 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, J.X., Sun, X.W., Wei, A., Lei, Y., Cai, X.P., Li, C.M., Dong, Z.L.: Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Aliofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook: Electrical and Optical Properties. CRC Press, Boca Raton (2016)CrossRefGoogle Scholar
  17. 17.
    Mock, A.: Padé approximant spectral fit for FDTD simulation of graphene in the near infrared. Opt. Mater. Express. 2(6), 771–781 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    McGaughey, G.B., Gagne, M., Rappe, A.K.: π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998)CrossRefGoogle Scholar
  19. 19.
    Saha, S., Mehan, N., Sreenivas, K., Gupta, V.: Temperature dependent optical properties of (002) oriented ZnO thin film using surface plasmon resonance. Appl. Phys. Lett. 95, 071106 (2009). ADSCrossRefGoogle Scholar
  20. 20.
    Pal, S., Verma, A., Saini, J.P., Prajapati, Y.K.: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor. IET Optoelectron. 13, 2 (2019)CrossRefGoogle Scholar
  21. 21.
    Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Xu, F., Das, S., Gong, Y., Liu, Q., Chien, H.-C., Chiu, H.-Y., Wu, J., Hui, R.: Complex refractive index tunability of graphene at 1550 nm wavelength. Appl. Phys. Lett. 106, 031109-4 (2015)ADSGoogle Scholar
  23. 23.
    Maurya, J.B., Prajapati, Y.K.: A novel method to calculate beamwidth of SPR reflectance curve: a comparative analysis. IEEE Sens. Lett. 1(4), 1–4 (2017)CrossRefGoogle Scholar
  24. 24.
    Gorula, N., Sinha, A.K., Santra, S., Manna, Ray S.K.: Multifunctional Au–ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Sci. Rep. 4, 6483 (2014)ADSGoogle Scholar
  25. 25.
    Rahman, M.S., Hasan, M.R., Rikta, K.A., Anower, M.S.: A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt. Mater. 75, 567–573 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    Sajal Agarwal, Y.K., Prajapati, J.B.Maurya: Effect of metallic adhesion layer thickness on the sensor performance. IEEE Photonics Technol. Lett. 28(21), 2415–2418 (2016)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Department of Electronics EngineeringNational Institute of Technology UttarakhandGarhwalIndia
  2. 2.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of Technology AllahabadAllahabadIndia
  3. 3.Department of Electronics EngineeringNetaji Subhas University of TechnologyNew DelhiIndia

Personalised recommendations