Performance analysis of circle polarization shift keying modulation over the exponentiated Weibull distribution

  • Li Zhang
  • Jingyuan Wang
  • Peng Xiang
  • Jiyong Zhao
  • Hua Zhou
  • Jilin Zheng
  • Han Zhang
  • Yuehong Shen
  • Tao PuEmail author
Regular Paper


The average bit error rate (BER) and outage probability of circle polarization shift keying (CPOLSK) modulation in free-space optical (FSO) system operating under exponentiated Weibull (EW) distribution are studied. The closed expression of the average BER is derived by generalized Gauss–Laguerre polynomials. The analytical results show the relationship between the average BER and average signal to noise ratio (SNR) of CPOLSK modulation with the effect of aperture averaging under different turbulence strengths and it is compared with on–off keying (OOK) modulation. The relationship between the outage probability and normalized threshold SNR of CPOLSK modulation is studied as well. All the analytical results are verified by the Monte Carlo simulation.


Average bit error rate (BER) Outage probability Circle polarization shift keying (CPOLSK) Exponentiated Weibull (EW)distribution Aperture averaging On–off keying (OOK) Monte Carlo simulation 



This work is supported by National Natural Science Foundation of China (61475193 and 61504170).


  1. 1.
    Zhu, X., Kahn, J.M.: Free-space optical communication through atmospheric turbulence channels. Trans. Commun. 50, 1293–1300 (2002)CrossRefGoogle Scholar
  2. 2.
    Tang, X.: Polarisation Shift Keying Modulated Free-Space Optical Communication Systems. University of Northumbria, Newcastle (2012)Google Scholar
  3. 3.
    Esmail, M.A., Fathallah, H., Alouini, M.S.: Outage probability analysis of FSO links over foggy channel. J. Photon. 9(2), 1–11 (2017)CrossRefGoogle Scholar
  4. 4.
    Kaushal, H., Kaddoum, G.: Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. 19(1), 57–96 (2017)CrossRefGoogle Scholar
  5. 5.
    Yang, L., Gao, X., Alouini, M.S.: Performance analysis of free-space optical communication systems with multiuser diversity over atmospheric turbulence channels. IEEE Photon. J. 6(2), 1–18 (2014)Google Scholar
  6. 6.
    Balaji, K.A., Prabu, K.: Performance evaluation of FSO system using wavelength and time diversity over malaga turbulence channel with pointing errors. Opt. Commun. 410, 643–651 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Vetelino, F.S., Young, C., Andrews, L., Recolons, J.: Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence. Appl. Opt. 46, 2099–2108 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Lee, I.E., Ghassemlooy, Z., Ng, W.P., Khalighi, M.A., Liaw, S.K.: Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors. Appl. Opt. 55(1), 1–9 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Jiang, J., Zhang, P., Zhang, R., Chen, S., Hanzo, L.: Aperture selection for ACO-OFDM in free-space optical turbulence channel. IEEE Trans. Veh. Technol. 65(8), 6089–6100 (2016)CrossRefGoogle Scholar
  10. 10.
    Sharma, P.K., Bansal, A., Garg, P., Tsiftsis, T., Barrios, R.: Relayed FSO communication with aperture averaging receivers and misalignment errors. IET Commun. 11(1), 45–52 (2017)CrossRefGoogle Scholar
  11. 11.
    Aarthi, G., Reddy, G.R.: Average spectral efficiency analysis of FSO links over turbulence channel with adaptive transmissions and aperture averaging. Opt. Commun. 410, 896–902 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Tyson, R.K.: Bit-error rate for free space adaptive optics laser communications. J. Opt. Soc. Am. A 19(4), 753–758 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Qu, Z., Djordjevic, I.B.: 500 Gb/s free-space optical transmission over strong atmospheric turbulence channels. ICTON 41(14), 3285–3288 (2016)Google Scholar
  14. 14.
    Yi, X., Liu, Z.J., Yue, P.: Average BER of free-space optical systems in turbulent atmosphere with exponentiated Weibull distribution. Opt. Lett. 37(24), 5142–5144 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, P., Zhang, L., Guo, L., Huang, F., Shang, T., Wang, R., Yang, Y.: Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels. Opt. Express 22, 20828–20841 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Tang, X., Ghassemlooy, Z., Popoola, W.O., Lee, C.G.: Coherent polarization shift keying modulated free space optical links over a gamma-gamma turbulence channel. Am. J. Eng. Appl. Sci. 4(4), 520–530 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhao, X.H.: Study on the Circle Polarization Shift Keying and the Theory of Polarization Propagation in Wireless Optical Communication. University of Harbin Institute of Technology, Harbin (2010)Google Scholar
  18. 18.
    Tang, X., Xu, Z.Y., Ghassemlooy, Z.: Coherent polarization modulated transmission through MIMO atmospheric optical turbulence channel. J. Lightwave Technol. 31(20), 3221–3228 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, Y., Du, F., Ma, J., Tan, L.: Employing circle polarization shift keying in free space optical communication with gamma-gamma atmospheric turbulence channel. Opt. Commun. 333, 167–174 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Jeyaseelan, J., Kumar, D.S., Caroline, B.E.: POLSK and ASK modulation techniques based BER analysis of WDM-FSO system for under turbulence conditions. Wireless Pers. Commun. 103, 3221–3237 (2018)CrossRefGoogle Scholar
  21. 21.
    Abaza, M., Mesleh, R., Mansour, A., Aggoune, E.H.: Performance analysis of MISO multi-hop FSO links over log-normal channels with fog and beam divergence attenuations. Opt. Commun. 334, 247–252 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Song, X.G., Yang, F., Cheng, J.L., Dhahir, N.A., Xu, Z.Y.: Subcarrier phase-shift keying systems with phase errors in lognormal turbulence channels. Opt. Laser Technol. 33(9), 1896–1904 (2015)Google Scholar
  23. 23.
    Chen, D., Huang, G.Q., Liu, G.H., Lei, Y.: Performance of adaptive subcarrier modulated MIMO wireless optical communications in Malaga turbulence. Opt. Commun. 435, 265–270 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    Hu, J.S., Zhang, Z.C., Wu, L., Dang, J., Zhu, G.H.: Average BER of coherent optical QPSK systems with phase errors over M turbulence channels. Chin. Opt. Lett. 16(12), 120101(1-6) (2018)Google Scholar
  25. 25.
    Jurado-Navas, A., Garrido-Balsells, J.M., Paris, J.F., Puerta-Notario, A.: A unifying statistical model for atmospheric optical scintillation. Numerical Simulations of Physical and Engineering Processes. (2011)Google Scholar
  26. 26.
    Farid, A., Hranilovic, S.: Outage capacity optimization for free-space optical links with pointing errors. J. Lightwave Technol. 25, 1702–1710 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Yi, X., Yao, M.W.: Free-space communications over exponentiated Weibull turbulence channels with nonzero boresight pointing errors. Opt. Express 23(3), 2904–2917 (2015)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Barrios, R., Dios, F.: Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves. Opt. Express 20(12), 13055–13064 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Barrios, R., Dios, F.: Exponentiated Weibull model for the irradiance probability density function of a laser beam propagating through atmospheric turbulence. Opt. Laser Technol. 45, 13–20 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Jiang, S., Yang, G.W., Wei, Y.Z., Bi, M.H., Lu, Y., Zhou, X.F., Hu, M., Li, Q.L.: Performance analysis of space-diversity free-space optical links over exponentiated Weibull channels. IEEE Photon. Technol. Lett. 27(21), 2250–2252 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Khallaf, H.S., Elfiqi, A.E., Shalaby, H.M.H., Sampei, S., Obayya, S.S.A.: On the performance evaluation of LQAM-MPPM techniques over exponentiated Weibull fading free-space optical channels. Opt. Commun. 416, 41–49 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    Garrido-Balsells, J.M., Jurado-Navas, A., Paris, J.F., Castillo-Vzquez, M., Puerta-Notario, A.: On the capacity of M-distributed atmospheric optical channels. Opt. Lett. 38(20), 3984–3987 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.College of Communications EngineeringArmy Engineering University of PLANanjingChina
  2. 2.College of Electronic and Optical Engineering and College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.No.724 Research Institute of CSICNanjingChina

Personalised recommendations