Advertisement

Optical Review

, Volume 26, Issue 6, pp 652–658 | Cite as

Alternative method for measuring the phase retardation and fast axis of a wave plate

  • Kun-Huang ChenEmail author
  • Jen-Te Tseng
  • Chien-Hung Yeh
  • Jing-Heng Chen
Regular Paper
  • 42 Downloads

Abstract

An alternative method is proposed for simultaneously measuring the phase retardation and fast axis angle of a wave plate by utilizing a radially polarized symmetric light beam. A horizontal polarized laser is passed through a spatial filter, a zero-order vortex half-wave retarder, for measuring the light beam. An analyzer and a charge-coupled device are used for the measurement. The charge-coupled device captures two intensity variation patterns before and after a wave plate to be tested is rotated by 45° in any initial fast axis angle direction. Through analysis of the intensity values, the phase retardation and fast axis angle of the wave plate to be tested can be accurately determined using mean calculation. To validate the proposed method, half-wave and quarter-wave plates were measured experimentally. The measurement errors of phase retardation and fast axis angle were approximately 0.087° and 0.094°, respectively.

Keywords

Radially polarized light Wave plate Phase retardation Fast axis angle 

Notes

Acknowledgements

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract no. MOST 107–2221–E–035–068–MY2.

References

  1. 1.
    Born, M., Wolf, E.: Principles of Optics, 7th edn, p. 1. Cambridge University Press, New York (1999)CrossRefGoogle Scholar
  2. 2.
    Goldstein, D.: Polarized Light, 2nd edn, p. 1. Marcel Dekker Inc, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Jin, S., Xing, J., Hu, P., Hu, M., Xia, G.: Polarization Sagnac interferometer with reflective grating for white-light channeled imaging polarimeter. Opt. Lasers. Technol. 108, 529–533 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Lu, S.H., Liu, W.C., Liu, J.P.: High-axial-resolution, full-field optical coherence microscopy using tungsten halogen lamp and liquid-crystal-based achromatic phase shifter. Appl. Opt. 54(14), 4447–4452 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Hsu, F.H., Chen, J.H., Chen, K.H., Yeh, C.H., Hsu, K.Y.: Optimized design of multiport optical circulator. Optik. 125, 2454–2457 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, K.H., Chiu, H.S., Chen, J.H., Chen, Y.C.: An alternative method for measuring small displacements with differential phase difference of dual-prism and heterodyne interferometry. Measurement 45(6), 1510–1514 (2012)CrossRefGoogle Scholar
  7. 7.
    Williams, P.A., Rose, A.H., Wang, C.M.: Rotating polarizer polarimeter for accurate retardation measurement. Appl. Opt. 36, 6466–6472 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Lin, J.F., Lo, Y.L.: Measurement of optical rotation and phase retardance of optical samples with depolarization effects using linearly and circularly polarized probe lights. Opt. Lasers. Eng. 47, 948–955 (2009)CrossRefGoogle Scholar
  9. 9.
    Lin, J.F.: Concurrent measurement of linear and circular birefringence using rotating-wave-plate Stokes polarimeter. Appl. Opt. 47(25), 4529–4539 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Liu, L., Zeng, A., Chen, B., Li, F., Zhu, L., Huang, H.: Simultaneous measurement of small birefringence magnitude and direction in real time. Opt. Laser. Eng. 53, 19–24 (2014)CrossRefGoogle Scholar
  11. 11.
    Xie, C., Zeng, A., Huang, H., Zhu, L., Yuan, Q., Li, F.: Real-time measurement of retardation and fast axis azimuth for wave plates. J. Opt. Technol. 82(5), 294–297 (2015)CrossRefGoogle Scholar
  12. 12.
    Feng, C.M., Huang, Y.C., Chang, J.G., Chang, M., Chou, C.: A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement. Opt. Commun. 141, 314–321 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Kuo, W.C., Liao, K.Y., Jan, G.J., Teng, H.K., Chou, C.: Simultaneous measurement of phase retardation and fast-axis angle of phase retardation plate. Jpn. J. Appl. Phys. 44, 1095–1100 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Lee, S.Y., Lin, J.F., Lo, Y.L.: A compact circular heterodyne interferometer for the simultaneous measurement of variation in the magnitude of phase retardation and the principal angle. Meas. Sci. Technol. 15, 978–982 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Lo, Y.L., Lai, C.H., Lin, J.F., Hsu, P.F.: Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer. Appl. Opt. 43(10), 2013–2022 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, B., Oakberg, T.C.: A new instrument for measuring both the magnitude and angle of low level linear birefringence. Rev. Sci. Instrum. 70, 3847–3854 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, B.: Linear birefringence measurement instrument using two photoelastic modulators. Opt. Eng. 41, 981–987 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Hao, B., Leger, J.: Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Opt. Express. 15(6), 3550–3556 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Zhan, Q.: Cylindrical vector beam: from mathematical concepts to applications. Adv. Opt. Photon. 1(1), 1–57 (2009)CrossRefGoogle Scholar
  20. 20.
    Lerman, G.M., Levy, U.: Radial polarization interferometer. Opt. Express. 16(7), 4567–4581 (2008)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringFeng Chia UniversityTaichungTaiwan, ROC
  2. 2.Department of PhotonicsFeng Chia UniversityTaichungTaiwan, ROC

Personalised recommendations