Advertisement

Optical Review

, Volume 26, Issue 6, pp 568–582 | Cite as

Infrared small-target detection based on multi-directional multi-scale high-boost response

  • Lingbing Peng
  • Tianfang Zhang
  • Suqi Huang
  • Tian Pu
  • Yuhan Liu
  • Yuxiao Lv
  • Yunchang Zheng
  • Zhenming PengEmail author
Regular Paper
  • 86 Downloads

Abstract

As of late, infrared (IR) small-target detection technology is broadly utilized in low-altitude monitoring frameworks, target-tracking frameworks, precise guidance frameworks and forest fire prevention frameworks. In this paper, we propose an infrared small-target detection strategy based on multi-directional multi-scale high-boost response (MDMSHB). First, an eight-direction filtering template is proposed, which can consider the directional information of the image and significantly suppress heterogeneous background such as cloud, linear interference and interface like ocean–sky background. Then, a map based on multi-directional multi-scale high-boost response (MDMSHB map) is calculated. Finally, a straightforward threshold segmentation technique is utilized to get the detection result. The simulation results comparing this method with the four state-of-the-art strategies in six sequences demonstrate that the proposed strategy can adequately suppress heterogeneous background and arbitrary noise. The approach can improve detection rate and reduce false alert rate as well.

Keywords

Detection Infrared small targets Directional filters High-boost response Human visual system 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61571096, 61775030) the Key Laboratory Fund of Beam Control, Chinese Academy of Sciences (2017LBC003) and Sichuan Science and Technology Program (2019YJ0167, 2019YFG0307).

Compliance with ethical standards

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Bae, T.W., Zhang, F., Kweon, I.S.: Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 55(1), 137–145 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Gao, C., Meng, D., Yang, Y., et al.: Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 22(12), 4996–5009 (2013)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Shao, X., Fan, H., Lu, G., et al.: An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 55(5), 403–408 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Song, D., Tao, D.: Biologically inspired feature manifold for scene classification. IEEE Trans. Image Process. 19(1), 174–184 (2010)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, H., Wei, Y., Li, L., et al.: Infrared moving target detection and tracking based on tensor locality preserving projection. Infrared Phys. Technol. 53(2), 77–83 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Shirvaikar, M.V., Trivedi, M.M.: A neural network filter to detect small targets in high clutter backgrounds. IEEE Trans. Neural Netw. 6(1), 252–257 (1995)CrossRefGoogle Scholar
  7. 7.
    Shi, Y., Wei, Y., Yao, H., et al.: High-boost-based multiscale local contrast measure for infrared small target detection. IEEE Geoscience and Remote Sensing Letters. 15(1), 33–37 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Chen, C.L.P., Li, H., Wei, Y., et al.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574–581 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Han, J., Ma, Y., Zhou, B., et al.: A robust infrared small target detection algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 11(12), 2168–2172 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Han, J., Liang, K., Zhou, B., et al.: Infrared small target detection utilizing the multiscale relative local contrast measure. IEEE Geosci. Remote Sens. Lett. 15(4), 612–616 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Qi, S., Xu, G., Mou, Z., et al.: A fast-saliency method for real-time infrared small target detection. Infrared Phys. Technol. 77, 440–450 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Qi, S., Ma, J., Li, H., et al.: Infrared small target enhancement via phase spectrum of quaternion Fourier transform. Infrared Phys. Technol. 62(2), 50–58 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Kim, S., Lee, J.: Small infrared target detection by region-adaptive clutter rejection for sea-based infrared search and track. Sensors 14(7), 13210–13242 (2014)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Peng, Z., Zhang, P., et al.: Infrared small target detection via nonnegativity-constrained variational mode decomposition. IEEE Geosci. Remote Sens. Lett. 14(10), 1700–1704 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Bai, X., Zhou, F.: Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn. 43(6), 2145–2156 (2010)CrossRefGoogle Scholar
  16. 16.
    Venkateswarlu, R.: Max–mean and max–median filters for detection of small targets. Proc. SPIE Int. Soc. Opt. Eng. 3809, 74–83 (1999)ADSGoogle Scholar
  17. 17.
    Wang, X., Lv, G., Xu, L.: Infrared dim target detection based on visual attention. Infrared Phys. Technol. 55(6), 513–521 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Han, J., Ma, Y., Huang, J., et al.: An infrared small target detecting algorithm based on human visual system. IEEE Geosci. Remote Sens. Lett. 13(3), 452–456 (2016)Google Scholar
  19. 19.
    Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)Google Scholar
  20. 20.
    Boccignone, G., Chianese, A., Picariello, A.: Small Target Detect. Using Wavel. 2, 1776 (1998)Google Scholar
  21. 21.
    He, Y.J., Li, M., Zhang, J.L., et al.: Small infrared target detection based on low-rank and sparse representation. Infrared Phys. Technol. 68, 98–109 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)CrossRefGoogle Scholar
  23. 23.
    Dai, Y., Wu, Y., Song, Y.: Infrared small target and background separation via column-wise weighted robust principal component analysis. Infrared Phys. Technol. 77, 421–430 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Dai, Y., Wu, Y.: Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(8), 3752–3767 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, X., Peng, Z., Kong, D., et al.: Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Trans. Geosci. Remote Sens. 55(10), 5481–5493 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Wang, X., Peng, Z., Kong, D., et al.: Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 63, 1–9 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Hou X, Zhang L. Saliency detection: A spectral residual approach. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)Google Scholar
  28. 28.
    Chen, Y., Xin, Y.: An efficient infrared small target detection method based on visual contrast mechanism. IEEE Geosci. Remote Sens. Lett. 13(7), 962–966 (2016)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Qin, Y., Li, B.: Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 13(12), 1890–1894 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Deng, H., Sun, X., Liu, M., et al.: Small infrared target detection based on weighted local difference measure. IEEE Trans. Geosci. Remote Sens. 54(7), 4204–4214 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    Bai, X., Bi, Y.: Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 56(4), 2452–2466 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    Liu, D., Cao, L., Li, Z., et al.: Infrared small target detection based on flux density and direction diversity in gradient vector field[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 11(7), 2528–2554 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Gu, Y., Wang, C., Liu, B.X., et al.: A kernel-based nonparametric regression method for clutter removal in infrared small-target detection applications. IEEE Geosci. Remote Sens. Lett. 7(3), 469–473 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Bi, Y., Bai, X., Jin, T., et al.: Multiple feature analysis for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 14(8), 1333–1337 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Wang, P., Tian, J.W., Gao, C.Q.: Infrared small target detection using directional highpass filters based on LS-SVM. Electron Lett. 45(3), 156 (2009)CrossRefGoogle Scholar
  36. 36.
    Liu, M., Du, H., Zhao, Y., et al.: Image small target detection based on deep learning with SNR controlled sample generation. Current Trends in Computer Science and Mechanical Automation, vol. 1. Sciendo Migration, pp. 211–220 (2017)Google Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.School of Information and Communication EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.The Laboratory of Imaging Detection and Intelligent PerceptionUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.College of Electrical EngineeringHebei University of ArchitectureZhangjiakouChina

Personalised recommendations