Advertisement

Optical Review

, Volume 26, Issue 4, pp 380–390 | Cite as

Comparison and combination of three spatial phase unwrapping algorithms

  • Qican ZhangEmail author
  • Yu Han
  • Yingshan Wu
Regular Paper
  • 35 Downloads

Abstract

Two-dimensional (2D) phase unwrapping is a key step in the existing advanced metrology technologies such as optical interferometry, optical three-dimensional (3D) measurement, and satellite radar interferometry (SAR). In this paper, the performance of three spatial phase unwrapping algorithms, branch-cut phase unwrapping algorithm (BC), minimum discontinuity algorithm (MD), and fast phase unwrapping algorithm (FPU) were compared in the case of noise pollution. The results show that the MD algorithm has satisfactory behavior in anti-noise, but it is time consuming compared with the other two algorithms. Therefore, two hybrid algorithms, combining the MD algorithm with the BC algorithm and the FPU algorithm, respectively, were proposed in this paper. In these two new algorithms, the merits of fast speed of BC algorithm and FPU algorithm were fully taken into account, and the advantage of the strong anti-noise of MD algorithm was also exploited. The accuracy of the new algorithms is improved compared with the BC and FPU, and the speed of the new algorithms is improved compared with the MD. The effectiveness of two hybrid algorithms is verified by the results of simulation and actual experiments.

Keywords

Phase unwrapping Branch-cut phase unwrapping algorithm Minimum discontinuity algorithm Fast phase unwrapping algorithm 

Notes

Acknowledgements

The authors acknowledge the support by National Key Scientific Instrument and Development Project (2013YQ49087904) and the National Natural Science Foundation (no. 61675141) of China.

References

  1. 1.
    Itoh, K.: Analysis of the phase unwrapping algorithm. Appl. Opt. 21(14), 2470 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Bioucasdias, J.M., Valadão, G.: Phase unwrapping via graph cuts. IEEE Trans. Image Process. 16(3), 698–709 (2007)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Huntley, J.M., Saldner, H.: Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl. Opt. 32(17), 3047–3052 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Ghiglia, D.C., Pritt, M.D.: Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley, New York (1998)zbMATHGoogle Scholar
  5. 5.
    Ghiglia, D.C., Romero, L.A.: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. A 11(1), 107–117 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Xia, H.T., Guo, R.X., Fan, Z.B., Qian, X.F., Yang, B.C.: Application of phase unwrapping algorithm based on least-squares and iteration in digital holography. SPIE Int. Soc. Opt. Eng. 7848, 78481J (2010)ADSGoogle Scholar
  7. 7.
    Guo, Y., Chen, X.T., Zhang, T.: Robust phase unwrapping algorithm based on least squares. Opt. Laser. Eng. 63(4), 25–29 (2014)CrossRefGoogle Scholar
  8. 8.
    Ghiglia, D.C., Romero, L.A.: Minimum Lp-norm two-dimensional phase unwrapping. J. Opt. Soc. Am. A 13(10), 1999–2013 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Flynn, T.J.: Two-dimensional phase unwrapping with minimum weighted discontinuity. JOSA. A. 14(10), 2692–2701 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, T., Lu, Y.G., Zhang, X.P.: Minimum-discontinuity phase unwrapping algorithm based on edge detection. Acta. Optic. Sin. 29(1), 180–186 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhang, T., Lu, Y.G., Zhang, X.P.: The application of tabu search on minimum discontinuity phase unwrapping algorithm. Acta. Optic. Sin. 29(8), 2169–2174 (2009)CrossRefGoogle Scholar
  12. 12.
    Ghiglia, D.C., Mastin, G.A., Romero, L.A.: Cellular-automata method for phase unwrapping. J. Opt. Soc. Am. A 4(1), 267–280 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Huntley, J.M.: Noise-immune phase unwrapping algorithm. Appl. Opt. 28(16), 3268–3270 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, Y., Feng, D.Z., Qu, X.N., Gu, C.Q.: Application of a novel branch-cut algorithm in phase unwrapping. J. Univ. Electron. Sci. Technol. China 42(4), 555–558 (2013)Google Scholar
  16. 16.
    Bone, D.J.: Fourier fringe analysis: the two-dimensional phase unwrapping problem. Appl. Opt. 30(25), 3627–3632 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    Su, X.Y., Chen, W.J.: Reliability-guided phase unwrapping algorithm: a review. Opt. Laser. Eng. 42(3), 245–261 (2004)CrossRefGoogle Scholar
  18. 18.
    Fang, S.P., Meng, L., Wang, L.J., Yang, P.C., Komori, M.: Quality-guided phase unwrapping algorithm based on reliability evaluation. Appl. Opt. 50(28), 5446–5452 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Zhao, M., Huang, L., Zhang, Q.C., Su, X.Y., Asundi, S., Qian, K.M.: Quality-guided phase unwrapping technique: comparison of quality maps and guiding strategies. Appl. Opt. 50(33), 6214–6224 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Flynn, T.J.: Consistent 2-D phase unwrapping guided by a quality map. IEEE Geosci. Remote Sens. Symp. 4, 2057–2059 (1996)Google Scholar
  21. 21.
    Zhong, H.P., Tang, J.S., Zhang, S., Zhang, X.B..: An improved mask-cut phase unwrapping algorithm. J. Geod. Geodyn. 33(5), 101–105 (2013)Google Scholar
  22. 22.
    Wang, L.Y., Li, H.: An algorithm based on the branch-cut and quality map for InSAR phase unwrapping. Appl. Sci. Technol. 43(5), 49–53 (2016)Google Scholar
  23. 23.
    Herráez, M.A., Burton, D.R., Lalor, M.J., Gdeisat, M.A.: Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 41(35), 7437–7444 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Abdul-Rahman, H.S., Gdeisat, M.A., Burton, D.R., Lalor, M.J.: Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. SPIE Int. Soc. Opt. Eng. 5856, 32–40 (2005)ADSGoogle Scholar
  25. 25.
    Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72(12), 156–160 (1982)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringSichuan UniversityChengduChina

Personalised recommendations