Advertisement

Optical Review

, Volume 26, Issue 4, pp 356–361 | Cite as

Single passband microwave photonic filter with widely tuning range based on optical injected distributed feedback semiconductor laser

  • Yuandong Li
  • Jilin Zheng
  • Peng Xiang
  • Huatao Zhu
  • Zhou Hua
  • Tao PuEmail author
  • Zhou Feng
  • Meng Hu
  • Yuan Liu
Regular Paper
  • 45 Downloads

Abstract

A novel widely tunable single passband microwave photonic filter (MPF) is proposed and experimentally demonstrated, which is based on a carrier-suppressed double sidebands (CS-DSB) optical signal injected into an distributed feedback (DFB) laser. A polarization modulator (PolM) and a polarization beam splitter (PBS) are exploited to generate the CS-DSB optical signal. When the CS-DSB optical signal is injected into the DFB laser, due to the frequency selective gain feature of optical injected DFB laser, one sideband of the CS-DSB optical signal is selected and amplified. Beating the amplified sideband with the optical carrier, the gain spectrum of the DFB laser is mapped to the frequency response of the MPF. The MPF can be tuned by adjusting the wavelength of the DFB laser. Experiment results show that the MPF can be tuned from 0 to 40 GHz by changing the working temperature of the DFB laser.

Keywords

Microwave photonics filter Semiconductor laser Optical injection 

Notes

Acknowledgements

The authors acknowledge: the National Science Foundation (NSF) of China (61504170, 61475193, 61174199, 61671306); Natural Science Foundation Council (NSFC) of Jiangsu Province (BK20140069).

References

  1. 1.
    Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat. Photon. 1(6), 319–330 (2007).  https://doi.org/10.1038/nphoton.2007.89 ADSCrossRefGoogle Scholar
  2. 2.
    Capmany, J., Ortega, B., Pastor, D.: A tutorial on microwave photonic filters. J. Lightw. Technol. 24(1), 201–229 (2006).  https://doi.org/10.1109/jlt.2005.860478 ADSCrossRefGoogle Scholar
  3. 3.
    Minasian, R.A.: Ultra-wideband and adaptive photonic signal processing of microwave signals. IEEE J. Quant. Electron. 52(1), 1–13 (2016).  https://doi.org/10.1109/jqe.2015.2499729 CrossRefGoogle Scholar
  4. 4.
    Yao, J.: Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microw. Mag. 16(8), 46–60 (2015).  https://doi.org/10.1109/mmm.2015.2441594 CrossRefGoogle Scholar
  5. 5.
    Yao, J.: Microwave photonics. J. Lightw. Technol. 27(3), 314–335 (2009).  https://doi.org/10.1109/jlt.2008.2009551 ADSCrossRefGoogle Scholar
  6. 6.
    Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., Sales, S.: Microwave photonic signal processing. J. Lightw. Technol. 31(4), 571–586 (2013).  https://doi.org/10.1109/jlt.2012.2222348 ADSCrossRefGoogle Scholar
  7. 7.
    Chan, E.H.W.: Cascaded multiple infinite impulse response optical delay line signal processor without coherent interference. J. Lightw. Technol. 29(9), 1401–1406 (2011).  https://doi.org/10.1109/jlt.2011.2126560 ADSCrossRefGoogle Scholar
  8. 8.
    Li, W., Li, M., Yao, J.: A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber bragg grating. IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).  https://doi.org/10.1109/tmtt.2012.2187678 ADSCrossRefGoogle Scholar
  9. 9.
    Eliyahu, E.D.D., Liang, W.: Resonant widely tunable opto-electronic oscillator. IEEE Photon. Technol. Lett. 25(15), 1535–1538 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Marpaung, D., Morrison, B., Pant, R., Eggleton, B.J.: Frequency agile microwave photonic notch filter with anomalously high stopband rejection. Opt. Lett. 38(21), 4300 (2013).  https://doi.org/10.1364/ol.38.004300 ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, W., Minasian, R.A.: Widely tunable single-passband microwave photonic filter based on stimulated brillouin scattering. IEEE Photon. Technol. Lett. 23(23), 1775–1777 (2011).  https://doi.org/10.1109/lpt.2011.2169242 ADSCrossRefGoogle Scholar
  12. 12.
    Tao, R., Feng, X., Cao, Y., Li, Z., Guan, B.-O.: Widely tunable single bandpass microwave photonic filter based on phase modulation and stimulated brillouin scattering. IEEE Photon. Technol. Lett. 24(13), 1097–1099 (2012).  https://doi.org/10.1109/lpt.2012.2195486 ADSCrossRefGoogle Scholar
  13. 13.
    Jintian, X., Rong, W., Tao, P., Tao, F., Jilin, Z., Dalei, C., Long, H., Xiang-Fei, C.: A novel approach to realizing a widely tunable single passband microwave photonic filter based on optical injection. IEEE J. Sel. Top. Quant. Electron. 21(6), 171–176 (2015).  https://doi.org/10.1109/jstqe.2014.2382296 CrossRefGoogle Scholar
  14. 14.
    Zhang, T., Chen, X., Xiong, J.: Wideband tunable single bandpass microwave photonic filter based on FWM dynamics of optical-injected DFB laser. Electron. Lett. 52(1), 57–59 (2016).  https://doi.org/10.1049/el.2015.1696 CrossRefGoogle Scholar
  15. 15.
    Zhu, H., Wang, R., Xiang, P., Pu, T.: Microwave photonic bandpass filter based on carrier-suppressed single sideband injected distributed feedback laser. IEEE Photon. J. 9(3), 1–12 (2017).  https://doi.org/10.1109/jphot.2017.2698072 Google Scholar
  16. 16.
    Hraimel, B., Zhang, X., Pei, Y., Wu, K., Liu, T., Xu, T., Nie, Q.: Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems. J. Lightw. Technol. 29(5), 775–781 (2011).  https://doi.org/10.1109/jlt.2011.2108261 ADSCrossRefGoogle Scholar
  17. 17.
    Li, P., Zou, X., Pan, W., Yan, L., Pan, S.: Tunable photonic radio-frequency filter with a record high out-of-band rejection. IEEE Trans. Microw. Theory Tech. (2017).  https://doi.org/10.1109/tmtt.2017.2693148 Google Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Communications Engineering CollegePLA Army Engineering UniversityNanjingChina
  2. 2.College of Information and CommunicationsNational University of Defense TechnologyWuhanChina
  3. 3.PLA Army Military Transportation UniversityZhenjiangChina

Personalised recommendations