Advertisement

Optical hyperspectral data encryption by using gamma distributed phase masks in gyrator domain

  • Wenqing SunEmail author
  • Lei Wang
  • Jun Wang
  • Hua Li
  • Quanying Wu
Regular Paper
  • 24 Downloads

Abstract

In this paper, a hyperspectral image encryption scheme based on gamma distributed phase masks in gyrator domain is proposed. The original hyperspectral data are encoded into phase images and then loaded to a spatial light modulator. The phase image is bonded with an amplitude image mask as the input complex amplitude for encryption. The cryptosystem is double random phase encryption with gamma distributed phase masks in gyrator domain. Each frame in the hyperspectral data is encrypted by random phase masks with different parameters, and the corresponding ciphertext is recorded synchronously. The corresponding decryption system is performed along the reverse direction of the encryption process. Some numerical simulations have been made to verify the security and flexibility of the proposed hyperspectral encryption scheme.

Keywords

Hyperspectral image Optical security and encryption Image processing Gamma distribution 

Notes

Acknowledgements

This research was funded by the National Natural Science Foundation of China (NSFC) (11503017, 61875145, 51607119); Six Talent Peaks Project in Jiangsu Province (2015-DZXX-026); Jiangsu Key Disciplines of Thirteenth Five-Year Plan (20168765); Suzhou Key Industry Technology Innovation Plan (SYG201646); Suzhou Key Laboratory for Precision and Efficient Processing Technology (SZS201712). We also thank anonymous reviewers for their helpful comments on an earlier draft of this paper.

References

  1. 1.
    Alfalou, A., Brosseau, C.: Optical image compression and encryption methods. Adv. Opt. Photonics 1(3), 589–636 (2009).  https://doi.org/10.1364/aop.1.000589 ADSGoogle Scholar
  2. 2.
    Millán, M.S.: Advanced optical correlation and digital methods for pattern matching—50th anniversary of vander lugt matched filter. J. Opt. 14(10), 103001–103020 (2012).  https://doi.org/10.1088/2040-8978/14/10/103001 ADSGoogle Scholar
  3. 3.
    Chen, W., Javidi, B., Chen, X.: Advances in optical security systems. Adv. Opt. Photonics 6(2), 120–155 (2014).  https://doi.org/10.1364/aop.6.000120 ADSGoogle Scholar
  4. 4.
    Liu, S., Guo, C., Sheridan, J.T.: A review of optical image encryption techniques. Opt. Laser Technol. 57, 327–342 (2014).  https://doi.org/10.1016/j.optlastec.2013.05.023 ADSGoogle Scholar
  5. 5.
    Javidi, B., Carnicer, A., Yamaguchi, M., Nomura, T., Pérez-Cabré, E., Millán, M.S., Nishchal, N.K., Torroba, R., Barrera, J.F., He, W., et al.: Roadmap on optical security. J. Opt. 18(8), 083001–083039 (2016).  https://doi.org/10.1088/2040-8978/18/8/083001 ADSGoogle Scholar
  6. 6.
    Yi, F., Moon, I., Lee, Y.H.: A multispectral photon-counting double random phase encoding scheme for image authentication. Sensors 14(5), 8877–8894 (2014).  https://doi.org/10.3390/s140508877 Google Scholar
  7. 7.
    Liu, Q., Wang, Y., Wang, J., Wang, Q.-H.: Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain. Opt. Rev. 25(1), 46–55 (2017).  https://doi.org/10.1007/s10043-017-0390-3 MathSciNetGoogle Scholar
  8. 8.
    Vaish, A., Kumar, M.: Color image encryption using singular value decomposition in discrete cosine stockwell transform domain. Opt. Appl. 48(1), 25–38 (2018).  https://doi.org/10.5277/oa180103 Google Scholar
  9. 9.
    Xu, H., Xu, W., Wang, S., Wu, S.: Phase-only asymmetric optical cryptosystem based on random modulus decomposition. J. Mod. Opt. 65(10), 1245–1252 (2018).  https://doi.org/10.1080/09500340.2018.1431314 ADSGoogle Scholar
  10. 10.
    Ravi, K., Basanta, B., Naveen, K.N.: Nonlinear qr code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition. J. Opt. 20(1), 015701–015710 (2018).  https://doi.org/10.1088/2040-8986/aa9943 Google Scholar
  11. 11.
    Zhao, H., Zhong, Z., Fang, W., Xie, H., Zhang, Y., Shan, M.: Double-image encryption using chaotic maps and nonlinear non-dc joint fractional fourier transform correlator. Opt. Eng. 55(9), 0931091–0931097 (2016).  https://doi.org/10.1117/1.oe.55.9.093109 Google Scholar
  12. 12.
    Vaish, A., Kumar, M.: Color image encryption using msvd, dwt and arnold transform in fractional fourier domain. Optik 145, 273–283 (2017).  https://doi.org/10.1016/j.ijleo.2017.07.041 ADSGoogle Scholar
  13. 13.
    Jaramillo, A., Barrera, J.F., Zea, A.V., Torroba, R.: Fractional optical cryptographic protocol for data containers in a noise-free multiuser environment. Opt. Lasers Eng. 102, 119–125 (2018).  https://doi.org/10.1016/j.optlaseng.2017.10.008 Google Scholar
  14. 14.
    Liu, Z., Zhang, Y., Liu, W., Meng, F., Wu, Q., Liu, S.: Optical color image hiding scheme based on chaotic mapping and hartley transform. Opt. Lasers Eng. 51(8), 967–972 (2013).  https://doi.org/10.1016/j.optlaseng.2013.02.015 Google Scholar
  15. 15.
    Singh, P., Yadav, A.K., Singh, K.: Phase image encryption in the fractional hartley domain using arnold transform and singular value decomposition. Opt. Lasers Eng. 91, 187–195 (2017).  https://doi.org/10.1016/j.optlaseng.2016.11.022 Google Scholar
  16. 16.
    Wang, J., Song, L., Liang, X., Liu, Y., Liu, P.: Secure and noise-free nonlinear optical cryptosystem based on phase-truncated fresnel diffraction and qr code. Opt. Quant. Electron. (2016).  https://doi.org/10.1007/s11082-016-0796-3 Google Scholar
  17. 17.
    Shen, X., Dou, S., Lei, M., Chen, Y.: Optical image encryption based on a joint fresnel transform correlator with double optical wedges. Appl. Opt. 55(30), 8513–8522 (2016).  https://doi.org/10.1364/AO.55.008513 ADSGoogle Scholar
  18. 18.
    Zhang, C., He, W., Wu, J., Peng, X.: Optical cryptosystem based on phase-truncated fresnel diffraction and transport of intensity equation. Opt. Express 23(7), 8845–8854 (2015).  https://doi.org/10.1364/oe.23.008845 ADSGoogle Scholar
  19. 19.
    Li, X., Meng, X., Yang, X., Wang, Y., Yin, Y., Peng, X., He, W., Dong, G., Chen, H.: Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme. Opt. Lasers Eng. 102, 106–111 (2018).  https://doi.org/10.1016/j.optlaseng.2017.10.023 Google Scholar
  20. 20.
    Liu, Q., Wang, Y., Wang, J., Wang, Q.-H.: Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain. Opt. Rev. 25(1), 46–55 (2017).  https://doi.org/10.1007/s10043-017-0390-3 MathSciNetGoogle Scholar
  21. 21.
    Rodrigo, J.A., Alieva, T., Calvo, M.L.: Gyrator transform: properties and applications. Opt. Express 15(5), 2190–2203 (2007).  https://doi.org/10.1364/oe.15.002190 ADSGoogle Scholar
  22. 22.
    Rodrigo, J.A., Alieva, T., Calvo, M.L.: Applications of gyrator transform for image processing. Opt. Commun. 278(2), 279–284 (2007).  https://doi.org/10.1016/j.optcom.2007.06.023 ADSGoogle Scholar
  23. 23.
    Sang, J., Zhao, J., Xiang, Z., Cai, B., Xiang, H.: Security analysis of image encryption based on gyrator transform by searching the rotation angle with improved pso algorithm. Sensors 15(8), 19199–19211 (2015).  https://doi.org/10.3390/s150819199 Google Scholar
  24. 24.
    Abuturab, M.R.: Color image security system using double random-structured phase encoding in gyrator transform domain. Appl. Opt. 51(15), 3006–3016 (2012).  https://doi.org/10.1364/AO.51.003006 ADSGoogle Scholar
  25. 25.
    Abuturab, M.R.: Color information cryptosystem based on optical superposition principle and phase-truncated gyrator transform. Appl. Opt. 51(33), 7994–8002 (2012).  https://doi.org/10.1364/AO.51.007994 ADSGoogle Scholar
  26. 26.
    Abuturab, M.R.: Color information security system using discrete cosine transform in gyrator transform domain radial-hilbert phase encoding. Opt. Lasers Eng. 50(9), 1209–1216 (2012).  https://doi.org/10.1016/j.optlaseng.2012.03.020 Google Scholar
  27. 27.
    Abuturab, M.R.: Color information security system using arnold transform and double structured phase encoding in gyrator transform domain. Opt. Laser Technol. 45, 525–532 (2013).  https://doi.org/10.1016/j.optlastec.2012.05.037 ADSGoogle Scholar
  28. 28.
    Abuturab, M.R.: Color image security system based on discrete hartley transform in gyrator transform domain. Opt. Lasers Eng. 51(3), 317–324 (2013).  https://doi.org/10.1016/j.optlaseng.2012.09.008 Google Scholar
  29. 29.
    Liu, Z., Zhang, Y., Li, S., Liu, W., Liu, W., Wang, Y., Liu, S.: Double image encryption scheme by using random phase encoding and pixel exchanging in the gyrator transform domains. Opt. Laser Technol. 47, 152–158 (2013).  https://doi.org/10.1016/j.optlastec.2012.09.007 ADSGoogle Scholar
  30. 30.
    Liansheng, S., Bei, Z., Xiaojuan, N., Ailing, T.: Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Opt. Express 24(1), 499–515 (2016).  https://doi.org/10.1364/OE.24.000499 ADSGoogle Scholar
  31. 31.
    Shao, Z., Shang, Y., Fu, X., Yuan, H., Shu, H.: Double-image cryptosystem using chaotic map and mixture amplitude-phase retrieval in gyrator domain. Multimed. Tools Appl. 77(1), 1285–1298 (2017).  https://doi.org/10.1007/s11042-016-4279-0 Google Scholar
  32. 32.
    Shao, Z., Shang, Y., Tong, Q., Ding, H., Zhao, X., Fu, X.: Multiple color image encryption and authentication based on phase retrieval and partial decryption in quaternion gyrator domain. Multimed. Tools Appl. (2018).  https://doi.org/10.1007/s11042-018-5818-7 Google Scholar
  33. 33.
    Yadav, A.K., Vashisth, S., Singh, H., Singh, K.: A phase-image watermarking scheme in gyrator domain using devil’s vortex fresnel lens as a phase mask. Opt. Commun. 344, 172–180 (2015).  https://doi.org/10.1016/j.optcom.2015.01.019 ADSGoogle Scholar
  34. 34.
    Chen, H., Du, X., Liu, Z.: Optical hyperspectral data encryption in spectrum domain by using 3d arnold and gyrator transforms. Spectrosc. Lett. 49(2), 103–107 (2015).  https://doi.org/10.1080/00387010.2015.1089447 ADSGoogle Scholar
  35. 35.
    Chen, H., Tanougast, C., Liu, Z., Blondel, W., Hao, B.: Optical hyperspectral image encryption based on improved chirikov mapping and gyrator transform. Opt. Lasers Eng. 107, 62–70 (2018).  https://doi.org/10.1016/j.optlaseng.2018.03.011 Google Scholar
  36. 36.
    Tebaldi, M., Furlan, W.D., Torroba, R., Bolognini, N.: Optical-data storage-readout technique based on fractal encrypting masks. Opt. Lett. 34(3), 316–318 (2009).  https://doi.org/10.1364/ol.34.000316 ADSGoogle Scholar
  37. 37.
    Zamrani, W., Ahouzi, E., Lizana, A., Campos, J., Yzuel, M.J.: Optical image encryption technique based on deterministic phase masks. Opt. Eng. 55(10), 1031081–1031089 (2016).  https://doi.org/10.1117/1.oe.55.10.103108 Google Scholar
  38. 38.
    Barrera, J.F., Henao, R., Torroba, R.: Optical encryption method using toroidal zone plates. Opt. Commun. 248(1–3), 35–40 (2005).  https://doi.org/10.1016/j.optcom.2004.11.086 ADSGoogle Scholar
  39. 39.
    Barrera, J.F., Henao, R., Torroba, R.: Fault tolerances using toroidal zone plate encryption. Opt. Commun. 256(4–6), 489–494 (2005).  https://doi.org/10.1016/j.optcom.2005.06.077 ADSGoogle Scholar
  40. 40.
    Rajput, S.K., Nishchal, N.K.: Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask. Appl. Opt. 51(22), 5377–5386 (2012).  https://doi.org/10.1364/AO.51.005377 ADSGoogle Scholar
  41. 41.
    Singh, H., Yadav, A.K., Vashisth, S., Singh, K.: Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Opt. Lasers Eng. 67, 145–156 (2015).  https://doi.org/10.1016/j.optlaseng.2014.10.011 Google Scholar
  42. 42.
    Lin, C., Shen, X.: Design of reconfigurable and structured spiral phase mask for optical security system. Opt. Commun. 370, 127–134 (2016).  https://doi.org/10.1016/j.optcom.2016.03.021 ADSGoogle Scholar
  43. 43.
    Lin, C., Shen, X., Lei, M.: Generation of plaintext-independent private key based on conditional decomposition strategy. Opt. Lasers Eng. 86, 303–308 (2016).  https://doi.org/10.1016/j.optlaseng.2016.06.023 Google Scholar
  44. 44.
    Singh, H.: Nonlinear optical double image encryption using random-optical vortex in fractional hartley transform domain. Opt. Appl. 47(4), 557–578 (2017).  https://doi.org/10.5277/oa170406 Google Scholar
  45. 45.
    Kumar, R., Bhaduri, B.: Optical image encryption in fresnel domain using spiral phase transform. J. Opt. 19(9), 095701–095710 (2017).  https://doi.org/10.1088/2040-8986/aa7cb1 ADSGoogle Scholar
  46. 46.
    Abuturab, M.R.: Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods. Opt. Lasers Eng. 98, 1–16 (2017).  https://doi.org/10.1016/j.optlaseng.2017.05.001 Google Scholar
  47. 47.
    Chen, Q., Shen, X., Dou, S., Lin, C., Wang, L.: Topological charge number multiplexing for jtc multiple-image encryption. Opt. Commun. 412, 155–160 (2018).  https://doi.org/10.1016/j.optcom.2017.12.015 ADSGoogle Scholar
  48. 48.
    Rafiq Abuturab, M.: Asymmetric multiple information cryptosystem based on chaotic spiral phase mask and random spectrum decomposition. Opt. Laser Technol. 98, 298–308 (2018).  https://doi.org/10.1016/j.optlastec.2017.08.010 ADSGoogle Scholar
  49. 49.
    Papoulis, A., Pillai, S.U.: Probability, random variables, and stochastic processes, 4th edn. McGraw-Hill, New york (2002)Google Scholar
  50. 50.
    Sun, W., Wang, L., Wang, J., Li, H., Wu, Q.: Optical image encryption using gamma distribution phase masks in the gyrator domain. J. Eur. Opt. Soc. Rapid Publ. 14(28), 1–10 (2018).  https://doi.org/10.1186/s41476-018-0096-6 Google Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and PhysicsSuzhou University of Science and TechnologySuzhouPeople’s Republic of China

Personalised recommendations