Advertisement

Dynamic Mach–Zehnder interferometer based on a Michelson configuration and a cube beam splitter system

  • A. Montes PérezEmail author
  • G. Rodríguez-Zurita
  • V. H. Flores-Muñoz
  • G. Parra-Escamilla
  • D. I. Serrano-García
  • A. Martínez-García
  • J. M. Islas-Islas
  • J. G. Ortega-Mendoza
  • L. García Lechuga
  • Noel-Ivan Toto-ArellanoEmail author
Regular Paper
  • 4 Downloads

Abstract

We developed simultaneous phase-shifting system based on a Mach–Zehnder interferometer and a replicating system integrated by a Michelson configuration and a cube beam splitter. The system is capable to obtain four simultaneous interferograms in a single capture, and the phase shifts are controlled by placing a linear polarizer in each replica obtained. The system retrieves four interferograms with a relative phase shift of π/2 and the optical phase map is calculated using the four-step algorithm. In addition, the configuration presents potential capabilities for generating spiral interference patterns. To show the advantage of the technique, experimental results are presented for static and dynamic samples.

Keywords

Interferometry Phase shift Optical metrology 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. Author N. I. Toto-Arellano acknowledges the support provided by the National Council of Science and Technology (CONACYT) by the project A1-S-20925. A. Montes Pérez acknowledges the support provided by the Vice-Rectoría de Investigation y Estudios de Posgrado (VIEP) for project MOPA-EXC17-G and the Programa para el Desarrollo Profesional Docente (PRODEP) under project DSA/ 103.5 / 15/7449. Author V.H. Flores-Muñoz acknowledges Programa para el Desarrollo Profesional Docente (PRODEP) for the grant provided (UPBIC-PTC-022).

Supplementary material

Supplementary material 1 (MP4 184 KB)

References

  1. 1.
    Carré, P.: Installation et utilisation du comparateurphotoélectrique es interferétiel du Bureau International des Poids et Measures. Bureau International des Poids et Measures 2, 13–23 (1966)Google Scholar
  2. 2.
    Crane, R.: Interference phase measurement. Appl. Opt. 8, 538 (1969)Google Scholar
  3. 3.
    Bruning, J.H., Herriott, D.R., Gallagher, J.E., Rosenfeld, D.P., White, A.D., Brangaccio, D.J.: Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt. 13, 2693 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    Bruning, J.H.: Fringe Scanning Interferometers. In: Malacara, D. (ed.) Optical Shop Testing, Wiley, New York, (1978)Google Scholar
  5. 5.
    Hardy, J., Feinleib, J., Wyant, J.C.: Real time phase correction of optical imaging systems. OSA Topical Meeting on Opt. Propagation through Turbulence, Boulder (1974)Google Scholar
  6. 6.
    Wyant, J.C.: Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems. Appl. Opt. 14, 2622 (1975)ADSCrossRefGoogle Scholar
  7. 7.
    Malacara, D.: Optical Shop Testing, 3rd edn. Wiley, New York (2007)CrossRefGoogle Scholar
  8. 8.
    Hariharan, P.: Basics of Interferometry. Elsevier, Amsterdam (2007)Google Scholar
  9. 9.
    Lasyk, L., Lukomski, M., Bratasz, L.: Simple digital speckle pattern interferometer (DSPI) for investigation of art objects. Opt. Appl. 41(3), 687–700 (2011)Google Scholar
  10. 10.
    Morris, M.N., Millerd, J., Brock, N., Hayes, J., Saif, B.: Dynamic phase-shifting electronic speckle pattern interferometer. Proc. SPIE 5869, 58691B-1 (2005)CrossRefGoogle Scholar
  11. 11.
    Toto-Arellano, N.I., Serrano-García, D.I., Martínez-García, A., Rodríguez Zurita, G., Montes-Pérez, A.: 4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer. J. Opt. 13(11), 115502 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Millerd, J.E., Brock, N., Hayes, J., North-Morris, M., Novak, M., Wyant, J.: Pixelated phase-mask dynamic interferometer. Proc. SPIE 5531, 304–314 (2004)Google Scholar
  13. 13.
    Kothiyal, M.P., Delisle, C.: Rotating analyzer heterodyne interferometer: error sources. Appl. Opt. 24, 2288–2290 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    Okoomian, H.J.: A two-beam polarization technique to measure optical phase. Appl. Opt. 8(11), 2363–2365 (1969)ADSCrossRefGoogle Scholar
  15. 15.
    Junwei Min, B., Yao, P., Gao, R., Guo, J., Zheng, Ye, T.: Parallel phase-shifting interferometry based on michelson-like architecture. Appl. Opt. 49, 6612–6616 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Abdelsalam, D.G., Yao, B., Gao, P., Min, J., Guo, R.: Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry. Appl. Opt. 51, 4891–4895 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Toto-Arellano, N.I., Serrano-García, D.I., Martínez-García, A.: Parallel two-step phase shifting interferometry using a double cyclic shear interferometer. Opt. Express 21, 31983–31989 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Awatsuji, Y., Sasada, M., Kubota, T.: Parallel quasi-phase-shifting digital holography. Appl. Phys. Lett. 85, 1069–1071 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Awatsuji, Y., Tahara, T., Kaneko, A., Koyama, T., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Parallel two-step phase-shifting digital holography. Appl. Opt. 47, D183–D189 (2008)CrossRefGoogle Scholar
  20. 20.
    Toto-Arellano, N.I., Serrano-Garcia, D.I., Rodriguez-Zurita, G.: Optical path difference measurements with a two-step parallel phase shifting interferometer based on a modified Michelson configuration. Opt. Eng. 56(9), 094107 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Barrientos-García, B., Moore, A.J., Pérez-López, C., Wang, L., Tschudi, T.: Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping. Appl. Opt. 38(28), 5944–5947 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    Barrientos-García, B., Moore, A.J., Pérez-López, C., Wang, L., Tschudi, T.: Spatial phase-stepped interferometry using a holographic optical element. Opt. Eng. 38(12), 2069–2074 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Wyant, J.C.: Dynamic interferometry. Opt. Photon. News 14(4), 36–41 (2003)CrossRefGoogle Scholar
  24. 24.
    Toto-Arellano, N.I.: 4D measurements of biological and synthetic structures using a dynamic interferometer. J. Mod. Opt. 64(sup. 4), S20–S29 (2017)CrossRefGoogle Scholar
  25. 25.
    Koliopoulos, C.L.: Simultaneous phase-shift interferometer. Proceeding of SPIE 1531, Advanced Optical Manufacturing and Testing II (1992)Google Scholar
  26. 26.
    Shock, I., Barbul, A., Girshovitz, P., Nevo, U., Korenstein, R., Shakeda, N.T.: Optical phase nanoscopy in red blood cells using low-coherence spectroscopy. J. Biomed. Opt. 17(10), 101509 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Pham, H., Ding, H., Sobh, N., Do, M., Patel, S., Popescu, G.: Off-axis quantitative phase imaging processing using CUDA: toward real-time applications. Biomed. Opt. Express 2(7), 1781–1793 (2011)CrossRefGoogle Scholar
  28. 28.
    Flores, M.V.H., Toto Arellano, N.-I., Serrano García, D.I., Martínez García, A., Rodríguez Zurita, G., García Lechuga, L.: Measurement of mean thickness of transparent samples using simultaneous phase shifting interferometry with four interferograms. Appl. Opt. 55, 4047–4051 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Malacara, D., Servin, M., Malacara, Z.: Phase Detection Algorithms in Interferomgram Analysis for Optical Testing. Wiley, New York (2005)Google Scholar
  30. 30.
    Ghiglia, C., Pritt, M.D.: Chapter.4 in “Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software”. Wiley, New York (1998)zbMATHGoogle Scholar
  31. 31.
    Servin, M., Estrada, J.C., Quiroga, J.A.: The general theory of phase shifting algorithms. Opt. Express 17, 21867–21881 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Kerr, D., Kaufmann, G.H., Galizzi, G.E.: Unwrapping of interferometric phase-fringe maps by the discrete cosine transform. Appl. Opt. 35(5), 810–816 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Ghiglia, D.C., Romero, L.A.: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. JOSA A 11(1), 107–117 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    Rodriguez-Zurita, G., Meneses-Fabian, C., Toto-Arellano, N.I., Vázquez-Castillo, J.F., Robledo-Sánchez, C.: One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms. Opt. Express 16, 7806–7817 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Toto-Arellano, N.I., Rodriguez-Zurita, G., Meneses-Fabian, C., Vazquez-Castillo, J.F.: Phase shifts in the Fourier spectra of phase gratings and phase grids: an application for one-shot phase-shifting interferometry. Opt. Express 16, 19330–19341 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Serrano-Garcia, D.I., Toto-Arellano, N.-I., Parra-Escamilla, G.A., Martínez García, A., Rodríguez-Zurita, G., Otani, Y.: Multiwavelength wavefront detection based on a lateral shear interferometer and polarization phase-shifting techniques. Appl. Opt. 57, 6860–6865 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    Toto-Arellano, N.I., Serrano-García, D.I., Rodríguez-Zurita, G., Pérez, A.M., Parra-Escamilla, G.: Temporal measurements of transparent samples with four simultaneous interferograms by using a Mach–Zehnder Interferometer. Opt. Commun. 429, 80–87 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    Rodríguez-Zurita, G., Toto-Arellano, N.I., Arroyo-Carrasco, M.L., Meneses-Fabían, C., Castillo, J.F.V.: Experimental observation of spiral patterns by obstruction of Bessel beams: application of single shot phase-shifting interferometry. Conf. on Lasers and Electro-Optics/Pacific Rim 2009 (Optical Society of America), 2009, ThE1 4 (2009)Google Scholar
  39. 39.
    Galushko, Y., Mokhun, I.: Detection of the vortices signs in the scalar fields. Opt. Appl. 38(4), 705–713 (2008)Google Scholar
  40. 40.
    Anguiano-Morales, M., Salas-Peimbert, D.P., Trujillo-Schiaffino, G., Hernandez, D., Toto-Arellano, N.I.: Bessel beam spatially truncated. Opt. Commun. 284(6), 1504–1509 (2006)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  • A. Montes Pérez
    • 1
    Email author
  • G. Rodríguez-Zurita
    • 1
  • V. H. Flores-Muñoz
    • 3
  • G. Parra-Escamilla
    • 4
  • D. I. Serrano-García
    • 4
  • A. Martínez-García
    • 5
  • J. M. Islas-Islas
    • 2
  • J. G. Ortega-Mendoza
    • 6
  • L. García Lechuga
    • 2
  • Noel-Ivan Toto-Arellano
    • 2
    Email author
  1. 1.Laboratorio de Óptica Física de la BeneméritaUniversidad Autónoma de PueblaPueblaMexico
  2. 2.Cuerpo Académico de Ingeniería Ciencias e Innovación Tecnológica, Centro de Tecnologías Ópticas y FotónicasUniversidad Tecnológica de TulancingoTulancingoMexico
  3. 3.Departamento de Ingeniería RobóticaUniversidad Politécnica del BicentenarioSilaoMexico
  4. 4.Centro Universitario de Ciencias Exactas e IngenieríasUniversidad de GuadalajaraGuadalajaraMexico
  5. 5.Centro de Investigaciones en Óptica A.CLeónMexico
  6. 6.División de IngenieríasUniversidad Politécnica de TulancingoTulancingoMexico

Personalised recommendations