Advertisement

Optical Review

, Volume 26, Issue 2, pp 247–261 | Cite as

An efficient onboard compression method for multispectral images using distributed post-transform in the wavelet domain in conjunction with a fast spectral decorrelator

  • Jin Li
  • Zilong LiuEmail author
  • Shou-fu TianEmail author
Regular Paper
  • 103 Downloads

Abstract

A remote sensing multispectral image compressor must be of low-complexity, high-robustness, and high-performance because it is usually located on a satellite platform where resources, such as power, memory, and processing capacity, are limited. Multispectral images having multiple bands are mainly compressed using compression algorithms based on three dimensional (3D) transforms, such as the 3D discrete wavelet transform, which exhibits satisfactory compression performance. However, the principal compression algorithm used for multispectral images having relatively a few bands is to encode each band independently, without considering the spectral redundancy between bands, which results in low compression performance. In this paper, an efficient compression method for multispectral images having a few bands is proposed, which is based on a distributed, improved post-transform in conjunction with a low-complexity, fast spectral decorrelator. First, a fast spectral transform and an improved post-transform having only a fast principal component analysis basis are used to generate the spectral and spatial sparse representation. Second, a distributed, improved bit plane encoding is integrated into the post-transform to remove the remaining spectral and spatial redundancy. Experimental results show that the proposed approach improves compression performance for test data in different performance measures: peak signal-to-noise ratio, mean structural similarity index, and visual information fidelity. Compared with current state-of-the-art compression techniques, the proposed method exhibits a performance improvement of 0.3–1.7 dB PSNR.

Keywords

Remote sensing camera Multispectral image Compression CCSDS KLT/PCA Post-transform Wavelet 

Notes

Funding

This work is supported by the Natural Science Foundation of China (Grant 61875180) and the National Key Research and Development Plan of China (Grant no. 2017YFF0205103).

References

  1. 1.
    Jia Zang, Y., Li, X., Xue, et al.: Multi-channel high-speed TDICCD image data acquisition and storage system. In: 2010 International conference on e-product e-service and e-entertainment (ICEEE 2010) (2010)Google Scholar
  2. 2.
    Zhi-le Wang, X., Zhuang, L., Zhang, Effect of image motion and vibration on image quality of TDICCD camera. Appl. Mech. Mater. 128–129, 584–588, (2012)CrossRefGoogle Scholar
  3. 3.
    Hao Wang, Z., Yang, Y., Chen, et al.: A study on the influence of the satellite attitude accuracy on TDICCD imaging. In: Proceedings of the 2012 8th IEEE international symposium on instrumentation and control technology (ISICT 2012) pp. 219–23 (2012)Google Scholar
  4. 4.
    Xin, J.: Investigation on the MTF for the large-aperture long focal length TDICCD camera. In: 6th International symposium on advanced optical manufacturing and testing technologies (AOMATT)—advanced optical manufacturing technologies, proceedings of SPIE, vol 8416 (2012)Google Scholar
  5. 5.
    Li, J.: A highly reliable and super-speed optical fiber transmission for hyper-spectral SCMOS Camera. Opt. Int. J. Light Electron Opt. 127(3), 1532–1545 (2016)CrossRefGoogle Scholar
  6. 6.
    Li, J., Jin, L., Li, G., Zhang, K., Wang, W.: Application of ADV212 to the large field of view multi-spectral TDICCD space camera. Spectr. Spectr. Anal. 32(6), 1700–1707 (2012)Google Scholar
  7. 7.
    Jin, L.X., Li, J., Hao, X.P.: Design of image transmission system for multi channel panchromatic TDICCD camera with large field of view. Appl. Mech. Mater. 380–384, 3758–3761 (2013)CrossRefGoogle Scholar
  8. 8.
    Javidi, B., Do, C.M., Hong, S.-H., Nomura, T. Multi-spectral holographic three-dimensional image fusion using discrete wavelet transform. J. Display Technol. 2(4), 411–417 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Shayron Nichols, H., Kim, A.A., Humos, et al.: A performance evaluation on DCT and wavelet-based compression methods for remote sensing images based on image content. IEEE 30(2), 358–363 (2009)Google Scholar
  10. 10.
    Aggoun, A.: Compression of 3D integral images using 3D wavelet transforms. J. Display Technol. 7(11), 586–595 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Kanga, H.-H., Shinb, D.-H., Kima, E.-S.: Compression scheme of sub-images using Karhunen–Loeve transform in three-dimensional integral imaging. Optics Communications 281(14), 3640–3647 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Shapiro, J.M.: An embedded wavelet hierarchical image coder. In: Proc. IEEE int. conf. acoustic, speech and signal processing, vol. 4, pp. 657–660 (1992)Google Scholar
  13. 13.
    Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Said, A., Pearlman, W.A.: A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans. Circuits Syst. Video Technol. 6(3), 243–250, (1996)CrossRefGoogle Scholar
  15. 15.
    Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)CrossRefGoogle Scholar
  16. 16.
    Li, J., Xing, F., Sun, T., You, Z.: Multiband CCD image compression for space camera with large field of view. J. Appl. Math. 347285, 1–9 (2014)Google Scholar
  17. 17.
    Li, J., Xing, F., You, Z.: An efficient image compressor for charge coupled devices camera. Sci. World J. 2014, 840762, (2014)Google Scholar
  18. 18.
    Charrier, M., Cruz, D.S., Larsson, M.: JPEG 2000, the next millennium compression standard for still images. In: IEEE International conference on multimedia computing and systems, vol.1, pp. 131–132 (1999)Google Scholar
  19. 19.
    Li, J., Xing, F., Sun, T., et al.: Multispectral image compression based on DSC combined with CCSDS-IDC. Sci. World J. 2014, 738735 (2014)Google Scholar
  20. 20.
    Zabala, A., Vitulli, R., Pons, X.: Impact of CCSDS-IDC and JPEG 2000 compression on image quality and classification. J. Electr. Comput. Eng. 7611067, (2012)Google Scholar
  21. 21.
    Shah, D., Bera, K., Joshi, S.: Software implementation of CCSDS recommended hyperspectral lossless image compression. Int. J. Image Graph. Sign. Process. 7(4), 35 (2015)CrossRefGoogle Scholar
  22. 22.
    Lossless Multispectral & Hyperspectral Image Compression. Recommendation for Space Data System Standards, CCSDS 123.0-B-1. Blue Book. Issue 1. CCSDS, Washington (2012)Google Scholar
  23. 23.
    Spectral preprocessing transform for multispectral and hyperspectral image compression. Recommendation for Space Data System Standards, CCSDS 122.1-B-1. Blue Book. Issue 1. CCSDS, Washington D.C (2017)Google Scholar
  24. 24.
    Blanes, I., Magli, E., Serra-Sagrista, J.: A tutorial on image compression for optical space imaging systems. IEEE Geosci. Remote Sens. Mag. 2(3), 8–26 (2014)CrossRefGoogle Scholar
  25. 25.
    Magli, E., Olmo, G., Quacchio, E.: Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC. IEEE Geosci Remote Sens Lett, 1(1), 21–25 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Magli, E., Barni, M., Abrardo, A., Grangetto, M.: Distributed source coding techniques for lossless compression of hyperspectral images. EURASIP J. Adv. Signal Process. 2007(1):24 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Keymeulen, D., Aranki, N., Hopson, B., et al.: GPU lossless hyperspectral data compression system for space applications. In: Aerospace conference, IEEE. IEEE, 1–9 (2012)Google Scholar
  28. 28.
    Ricci, M., Magli, E.: Predictor analysis for onboard lossy predictive compression of multispectral and hyperspectral images. J. Appl. Remote Sens. 7(1), 074591 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Kiely, A., Klimesh, M., Xie, H., Aranki, N: ICER-3D: A progressive wavelet-based compressor for hyperspectral images, NASA Technical Report, Washington, DC. https://ntrs.nasa.gov/search.jsp?R=20060008608 (2005)
  30. 30.
    Klimesh, M., Kiely, A., Xie, H., et al.: Spectral ringing artifacts in hyperspectral image data compression. In: Hyperspectral Data Compression. Springer US, pp. 379–405 (2006)Google Scholar
  31. 31.
    Li, J., Xing, F., You, Z.: Compression of multispectral images with comparatively few bands using posttransform Tucker decomposition. Math. Probl. Eng. 296474, 1–17 (2014)Google Scholar
  32. 32.
    Li, J., Liu, F., Liu, Z.: Efficient multi-bands image compression method for remote cameras. Chin. Opt. Lett. 2, 018 (2017)Google Scholar
  33. 33.
    Li, J., et al.: High-accuracy self-calibration for smart, optical orbiting payloads integrated with attitude and position determination. Sensors 16(8), 1176 (2016)CrossRefGoogle Scholar
  34. 34.
    Guang, Z., Yuyang, L., Xingzi, B.: Conservative term constrained Kalman filter for autonomous orbit determination. IEEE Trans. Aerosp. Electr. Syst. 54(2), 783–793 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    Ning, X., Wang, F., Jiancheng F.: An Implicit UKF for satellite stellar refraction navigation system. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1489–1503 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    Roshanian, J., Yazdani, S., Ebrahimi, M.: Star identification based on euclidean distance transform, voronoi tessellation, and k-nearest neighbor classification. IEEE Trans. Aerosp. Electron. Syst. 52(6), 2940–2949 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Li, J., Liu, Z.: Efficient compressed imaging method for a microsatellite optical camera. Appl. Opt. 55(28), 8070–8081 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Chair, Z., Varshney, P.K.: Optimal data fusion in multiple sensor detection systems. IEEE Trans. Aerosp. Electron. Syst. 1, 98–101 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    Xie, H., et al.: Adaptive visual servoing of UAVs using a virtual camera. IEEE Trans. Aerosp. Electron. Syst. 52(5), 2529–2538 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, J., Fowler, J.E., Liu, G.: Lossy-to-lossless compression of hyperspectral imagery using three-dimensional TCE and an integer KLT. IEEE Geosci. Remote Sens. Lett. 5(4), 814–818 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Saghri, J.A., Schroeder, S.: An adaptive two-stage KLT scheme for spectral decorrelation in hyperspectral bandwidth compression. In: Proc. SPIE, vol. 7443, pp. 744313 (2009)Google Scholar
  42. 42.
    Penna, B., Tillo, T., Magli, E., Olmo, G.: Transform coding techniques for lossy hyperspectral data compression. IEEE Trans Geosci. Remote Sens. 45, 1408–1421 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Wang, L., Wu, J., Licheng, J., Shi, G.: Lossy-to-lossless hyperspectral image compression based on multilierless reversible integer TDLT/KLT. IEEE Geosci Remote Sens Lett. 6(3), 587–591 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Egho, C., Vladimirova, T.: Hardware acceleration of the integer karhunen-loeve transform algorithm for satellite image compression. In: 2012 IEEE international geosciences and remote sensing symposium (IGARSS), pp. 4062–4065 (2012)Google Scholar
  45. 45.
    Egho, C., Vladimirova, T., Sweeting, M.N.: Acceleration of Karhunen–Loeve transform for system-on-chip platforms. In: Proceedings of the 2012 NASA/ESA conference on adaptive hardware and system (AHS 2012), pp. 272–279 (2012)Google Scholar
  46. 46.
    Blanes, I., Serra-Sagristà, J.: Cost and Scalability improvements to the Karhunen-Loêve transform for remote-sensing image coding. IEEE Trans. Geosci. Remote Sens. 48(7), 2854–2863 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Yodchanan, W.: Lossless compression for 3-D MRI data using reversible KLT. In: 2008 international conference on audio, language and image processing, pp. 1560–15604 (2008)Google Scholar
  48. 48.
    Noor, N.R.M., Vladimirova, T.: Parallel implementation of lossless clustered integer KLT using OpenMP. In: Proceedings of the 2012 NASA/ESA conference on adaptive hardware and systems (AHS 2012), pp. 122–128 (2012)Google Scholar
  49. 49.
    Penna, B., Tillo, T., Magli, E., Olmo, G.: A new low complexity KLT for lossy hyperspectral data compression. In: IEEE international symposium on geosciences and remote sensing (IGARSS), pp. 3525–3528 (2006)Google Scholar
  50. 50.
    Bravo, I., Mazo, M., Lázaro, J.L., et al.: Novel HW architecture based on FPGAs oriented to solve the eigen problem. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(12), 1722–1725 (2008)CrossRefGoogle Scholar
  51. 51.
    Mei, W.Y., Ming, J., Shuai, L., et al.: An implementation of matrix eigenvalue decomposition with improved JACOBI algorithm. In: Proceedings 2010 first international conference on pervasive computing, signal processing and applications (PCSPA 2010), pp. 952–955 (2010)Google Scholar
  52. 52.
    Noor, N.R.M., Vladimirova, T.: Integer KLT design space exploration for hyperspectral satellite image compression. In: Proceedings 5th international conference, convergence and hybrid information technology, ICHIT, pp. 661–668, (2011)Google Scholar
  53. 53.
    Wang, L., Wu, J., Licheng, J., et al.: 3D medical image compression based on multiplierless low-complexity RKLT and shape-adaptive wavelet transform. In: Proceedings of the 2009 16th IEEE international conference on image processing (ICIP 2009), pp. 2521–2524 (2009)Google Scholar
  54. 54.
    Xin, L., Lei, G., Zhu-sheng, Y.: Lossless compression of hyperspectral imagery with reversible integer transform. Acta Photonica Sinica 36, 1457–1462 (2007)Google Scholar
  55. 55.
    Hao, P., Shi, Q.: Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Process. 49(10), 2314–2324 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    She, Y., Hao, P., Paker, Y.: Matrix factorizations for parallel integer transformation. IEEE Trans. Signal Process. 54(12), 4675–4684 (2006)ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    Bruekers, F.A.M.L., van den Ad, Enden, W.M.: New networks for perfect inversion and perfect reconstruction. IEEE J. Sel. Areas Commun. 10(1), 129–137 (1992)CrossRefGoogle Scholar
  58. 58.
    Delaunay, X., et al.: Satellite image compression by directional decorrelation of wavelet coefficients. In: Acoustics, speech and signal processing, 2008. ICASSP 2008. IEEE international conference on IEEE (2008)Google Scholar
  59. 59.
    Delaunay, X., Chabert, M., Charvillat, V., et al.: Satellite image compression by concurrent representations of wavelet blocks. Annals of telecommunications-annales des telecommunications 67(1–2), 71–80 (2012)CrossRefGoogle Scholar
  60. 60.
    Delaunay, X., Chabert, M., Charvillat, V., Morin, G.: Satellite image compression by post-transform in the wavelet domain. Signal Process. pp. 599–610 (2010)Google Scholar
  61. 61.
    Stéphane, M., Frédéric: Analysis of low bit rate image transform coding. IEEE Trans. Signal Process. 46(4), 1027–1042 (1998)CrossRefGoogle Scholar
  62. 62.
    Le Pennec, E., Mallat, S.: Sparse Geometric image representations with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005)ADSMathSciNetCrossRefGoogle Scholar
  63. 63.
    Zhang, J., Li, H., Chang Wen, C.: Distributed coding techniques for onboard lossless compression of multispectral images. In: Multimedia and expo, 2009. ICME 2009. IEEE international conference on. IEEE (2009)Google Scholar
  64. 64.
    Pan, X., Liu, R., Lv, X.: Low-complexity compression method for hyperspectral images based on distributed source coding. IEEE Geosci. Remote Sens. Lett. 9(2), 224–227 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    Wang, J., Liu, R., Zhao, H.: Low complexity DCT-based distributed source coding wits gray code for hyperspectral image. In: International conference on wireless communications and signal processing, pp. 1304–1308 (2009)Google Scholar
  66. 66.
    Abrardo, A., et al.: Error-resilient and low-complexity onboard lossless compression of hyperspectral images by means of distributed source coding. IEEE Trans. Geosci. Remote Sens. 48(4), 1892–1904 (2010)ADSCrossRefGoogle Scholar
  67. 67.
    Myung, S., Yang, K., Kim, J.: Quasi-cyclic LDPC codes for fast encoding. IEEE Trans. Inf. Theory 51(8), 2894–2901 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Khelifi, F., Bouridane, A., Kurugollu, F.: Joined spectral trees for scalable SPIHT-based multispectral image compression. IEEE Trans. Multimed. 10(3), 316–329 (2008)CrossRefGoogle Scholar
  69. 69.
    Gonzalez-Conejero, J., Bartrina-Rapesta, J., Serra-Sagrista, J.: JPEG2000 encoding of remote sensing multispectral images with no-data regions. IEEE Geosci. Remote Sens. Lett. 7(2), 251–255 (2010)ADSCrossRefGoogle Scholar
  70. 70.
    Blanes, I., Serra-Sagristà, J.: Pairwise orthogonal transform for spectral image coding. IEEE Trans. Geosci. Remote Sens. 49(3), 961–972 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    Acharya, T., Tsai, P.S.: JPEG2000 standard for image compression: concepts, algorithms and VLSI architectures. Wiley, Hoboken (2005)Google Scholar
  72. 72.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)ADSCrossRefGoogle Scholar
  73. 73.
    Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2019

Authors and Affiliations

  1. 1.Electrical Engineering Division, Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Optic DivisionNational Institute of MetrologyBeijingChina
  3. 3.School of MathematicsChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations