Optical Review

, Volume 25, Issue 5, pp 585–592 | Cite as

How should we cope with effective media?

  • Hiroyuki IchikawaEmail author
Regular Paper


Effective optical constants such as an effective index are useful figures in analyzing and designing subwavelength optical elements. However, its definition and practical usage in everyday work are not always straightforward as expected, in particular in visible light frequencies. We compare several different approaches to the concept of effective media and discuss its practicality and problems associated.


Diffractive optics Effective medium theory Subwavelength structures Metamaterials 



The author is deeply indebted to Yuya Hino, currently with SUBARU Co., for his contribution at the early stage of this research as a postgraduate student in his laboratory of Ehime University.


  1. 1.
    Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385–420 (1904)ADSCrossRefGoogle Scholar
  2. 2.
    Markel, V.A.: Introduction to Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33(7), 1244–1256 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Rytov, S.M.: Electromagnetic properties of a finely stratified medium. Soviet Phys. JETP 2(3), 465–477 (1956)MathSciNetGoogle Scholar
  4. 4.
    Yariv, A., Yeh, P.: Optical waves in crystals, pp. 165–174. Wiley, New York (1984)Google Scholar
  5. 5.
    Veselago, V.G.: The electromagnetics of substances with simultaneously negative values of \(\epsilon\) and \(\mu\). Soviet Phys. Usp. 10(4), 509–514 (1968)Google Scholar
  6. 6.
    Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Smith, D.R., Schultz, S., Markoš, P., Soukoulis, C.M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Smith, D.R., Vier, D.C., Koschny, Th, Soukoulis, C.M.: Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, X., Grzegorczyk, T.M., Wu, B.-I., Pacheco Jr., J., Kong, A.: Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Arslanagić, S., Hansen, T.V., Mortensen, N.A., Gregersen, A.H., Sigmund, O., Ziolkowski, R.W., Breinbjerg, O.: A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag. Mag. 55(2), 91–106 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Menzel, C., Rockstuhl, C., Paul, T., Lederer, F., Pertsch, T.: Retrieving effective parameters for metamaterials at oblique incidence. Phys. Rev. B 77, 195328 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Kuittinen, M., Turunen, J., Vahimaa, P.: Subwavelength-structured elements. In: Turunen, J., Wyrowski, F. (eds.) Diffractive optics for industrial and commercial applications, pp. 303–323. Akademie Verlag, Berlin (1997)Google Scholar
  13. 13.
    Turunen, J.: Diffraction theory of microrelief gratings. In: Herzig, H.P. (ed.) Micro-Otics, pp. 31–52. Taylor & Francis, London (1997)Google Scholar
  14. 14.
    Li, L.: Fourier modal method. In: Popov, E. (ed.) Gratings: theory and numeric applications, pp. 537–578. Université d’Aix-Marseille, Marseille (2014)Google Scholar
  15. 15.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, L.: Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J. Opt. Soc. Am. A 13(5), 1024–1035 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    Crystallographic data on minerals. In Lide, D. K. (ed.) CRC handbook of chemistry and physics, Internet Version 2005,, CRC Press, Boca Raton (2005)
  19. 19.
    Jackson, J.D.: Classical electrodynamics, p. 249. Wiley, New York (1999)zbMATHGoogle Scholar
  20. 20.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of continuous media, p. 274. Pergamon Press, Oxford (1984)Google Scholar
  21. 21.
    Interesting interpretation in simple diffraction gratings is recently reported in the following paper. Popov, E., Fehrembach, A.-L., Li, L.: Semi-phenomenological effective permittivity approach to metallic periodic structures. Opt. Exp. 26(10), 12813–12837 (2018)Google Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringEhime UniversityEhimeJapan

Personalised recommendations