Advertisement

Optical Review

, Volume 25, Issue 5, pp 540–548 | Cite as

One-time pad image encryption based on physical random numbers from chaotic laser

  • Jianzhong Zhang
  • Changkun Feng
  • Mingjiang Zhang
  • Yi Liu
Regular Paper
  • 77 Downloads

Abstract

A one-time pad image encryption scheme based on physical random numbers from chaotic laser is proposed and explored. The experimentally generated physical random numbers serving as the encryption keys are constructed into two random sequence image matrices, which are applied to shuffle the pixel position of the original image and change its pixel value, respectively. Some tests including statistical analysis, sensitivity analysis, and key space analysis are performed to assess reliability and efficiency of the image encryption scheme. The experimental results show that the image encryption scheme has high security and good anti-attack performance.

Keywords

Image encryption Physical random number Chaotic laser One-time pad 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) under Grant 61527819, by Research Project Supported by Shanxi Scholarship Council of China under Grant 2016-036 and 2017-052, and by Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi and Program for Sanjin Scholar.

References

  1. 1.
    Zhu, C.X.: A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285, 29–37 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)CrossRefGoogle Scholar
  3. 3.
    Arroyo, D., Li, C.Q., Li, S.J., Alvarez, G., Halang, W.A.: Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm. Chaos Solitons Fractals 41, 2613–2616 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Ghebleh, M., Kanso, A.: A novel efficient image encryption scheme based on chained skew tent maps. Neural Comput. Appl. 28, 953–967 (2017)Google Scholar
  5. 5.
    Guan, Z.H., Huang, F.J., Guan, W.J.: Chaos-based image encryption algorithm. Phys. Lett. A 346, 153–157 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Behnia, S., Akhavan, A., Akhshani, A., Samaudin, A.: Image encryption based on the Jacobian elliptic maps. J. Syst. Softw. 86, 2429–2438 (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, G.R., Mao, Y.B., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21, 749–761 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gao, T.G., Chen, Z.Q.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372, 394–400 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Banerjee, S., Rondoni, L., Mukhopadhyay, S., Misra, A.P.: Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption. Opt. Commun. 284, 2278–2291 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Wang, S.Y., Zhao, J.F., Li, X.F., Zhang, L.T.: Image blocking encryption algorithm based on laser chaos synchronization. J. Electr. Comput. Eng.  https://doi.org/10.1155/2016/4138654 (2016)CrossRefGoogle Scholar
  11. 11.
    Behnia, S., Akhshani, A., Mahmodi, H., Akhavan, A.: A novel algorithm for image encryption based on mixture of chaotic maps. Chaos Solitons Fractals 35, 408–419 (2008)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Alsafasfeh, Q.H., Arfoa, A.A.: Image encryption based on the general approach for multiple chaotic systems. J. Signal Inf. Process. 2, 238–244 (2011)Google Scholar
  13. 13.
    Younes, M.A.B., Jantan, A.: Image encryption using block-based transformation algorithm. IAENG Int. J. Comput. Sci. 35, 407–415 (2008)Google Scholar
  14. 14.
    Maniccam, S.S., Bourbakis, N.G.: Image and video encryption using SCAN patterns. Pattern Recognit. 37, 725–737 (2004)CrossRefGoogle Scholar
  15. 15.
    Tao, R., Meng, X.Y., Wang, Y.: Image encryption with multiorders of fractional Fourier transforms. IEEE Trans. Inf. Forensics Sect. 5, 734–738 (2010)CrossRefGoogle Scholar
  16. 16.
    Loukhaoukha, K., Chouinard, J.Y., Berdai, A.: A secure image encryption algorithm based on Rubik’s cube principle. J. Electr. Comput. Eng.  https://doi.org/10.1155/2013/848392 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Akhavan, A., Samsudin, A., Akhshani, A.: Cryptanalysis of an image encryption algorithm based on DNA encoding. Opt. Laser Technol. 95, 94–99 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Mitra, A., Rao, Y.V.S., Prasanna, S.R.M.: A new image encryption approach using combinational permutation techniques. World Acad. Sci. Eng. Technol. 14, 919–923 (2008)Google Scholar
  20. 20.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, H.J., Kadir, A., Sun, X.B.: Chaos-based fast colour image encryption scheme with true random number keys from environmental noise. IET Image Process. 11, 324–332 (2017)CrossRefGoogle Scholar
  22. 22.
    Sivakumar, T., Venkatesan, R.: A new image encryption method based on Knight’s travel path and true random number. J. Inf. Sci. Eng. 32, 133–152 (2016)Google Scholar
  23. 23.
    Random number download website. http://random-number.net. Accessed 4 May 2018
  24. 24.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Yoshimura, K., Muramatsu, J., Davis, P., Harayama, T., Okumura, H., Morikatsu, S., Aida, H., Uchida, A.: Secure key distribution using correlated randomness in lasers driven by common random light. Phys. Rev. Lett. 108, 070602 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photonics 4, 58–61 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, J.Z., Wang, Y.C., Liu, M., Xue, L.G., Li, P., Wang, A.B., Zhang, M.J.: A robust random number generator based on differential comparison of chaotic laser signals. Opt. Express 20, 7496–7506 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., leigh, S., Levenson, M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software. Accessed 4 May 2018
  29. 29.
    Argyris, A., Deligiannidis, S., Pikasis, E., Bogris, A., Syvridis, D.: Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit. Opt. Express 18, 18763–187638 (2010)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi ProvinceTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.Institute of Optoelectronic Engineering, College of Physics and OptoelectronicsTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations