Probing surface plasmons by bare V-shaped tips: modeling by geometrical optics and rigorous diffraction theory

  • 196 Accesses

  • 1 Citations


We consider probing inhomogeneous waves in the near fields of metallic nanostructures with the aid of a dielectric V-shaped wedge connected to a waveguide. A geometrical model based on the local plane interface approach is proposed to describe the interaction of the wedge with the inhomogeneous field. The fundamental ideas behind the geometrical model are validated by comparison with the results given by rigorous diffraction analysis, and applied to probing plasmonic interference patterns generated by metallic gratings with very narrow slits. The model explains intuitively why a bare wedge with a large apex angle is capable of subwavelength resolution in the spirit of scanning near-field microscopy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1968)

  2. 2.

    Petit, R. (ed.): Electromagnetic Theory of Gratings. Springer, Berlin (1980)

  3. 3.

    Neviére, M., Popov, E.: Light Propagation in Periodic Media. Differential Theory and Design. Marcel Dekker, New York (2003)

  4. 4.

    Kim, H., Park, J., Lee, B.: Fourier Modal Method and Its Applications in Computational Nanophotonics. Taylor & Francis, CRC Press (2012)

  5. 5.

    Pfeil, A., Wyrowski, F., Drauschke, A., Aagedal, H.: Analysis of optical elements with the local plane-interface approximation. Appl. Opt. 39, 3304–3313 (2000)

  6. 6.

    Lajunen, H., Tervo, J., Turunen, J., Vallius, T., Wyrowski, F.: Simulation of light propagation by local spherical interface approximation. Appl. Opt. 42, 6804–6810 (2003)

  7. 7.

    Wyrowski, F., Kuhn, M.: Introduction to field tracing. J. Mod. Opt. 58, 449–466 (2011)

  8. 8.

    Swanson, G.J.: Binary optics technology: theoretical limits of the diffraction efficiency of multilevel diffractive optical elements. MIT Tech. Rep. 914, MIT (1991)

  9. 9.

    Hessler, T., Rossi, M., Kunz, R.E., Gale, M.T.: Analysis and optimization of fabrication of continuous-relief diffractive optical elements. Appl. Opt. 37, 4069–4079 (1998)

  10. 10.

    Sandfuchs, O., Brunner, R., Pätz, D., Sinzinger, S., Ruoff, J.: Rigorous analysis of shadowing effects in blazed transmission gratings. Opt. Lett. 31, 3638–3640 (2006)

  11. 11.

    Sandfuchs, O., Pätz, D., Sinzinger, S., Pesch, A., Brunner, R.: Analysis of the influence of the passive facet of blazed transmission gratings in the intermediate diffraction regime. J. Opt. Soc. Am. A 25, 1885–1893 (2008)

  12. 12.

    Noponen, E., Turunen, J., Vasara, A.: Electromagnetic theory and design of diffractive-lens arrays. J. Opt. Soc. Am. A 10, 434–443 (1993)

  13. 13.

    Wang, H., Kuang, D., Fang, Z.: Diffraction analysis of blazed transmission gratings with a modified extended scalar theory. J. Opt. Soc. Am. A 25, 1253–1259 (2008)

  14. 14.

    Moulin, G., Goudail, F., Chavel, P., Kuang, D.: Heuristic models for diffracting by some simple mirror-objects. J. Opt. Soc. Am. A 26, 767–775 (2009)

  15. 15.

    Bose, G., Hyvärinen, H.J., Tervo, J., Turunen, J.: Geometrical optics in the near field: local plane-interface approach with evanescent waves. Opt. Express 23, 330–339 (2015)

  16. 16.

    Saleh, B.E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, New York (1991)

  17. 17.

    Stamnes, J.J.: Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves. Taylor & Francis, CRC Press (1986)

  18. 18.

    Keller, J.B.: Geometrical theory of diffraction. J. Opt. Soc. Am. 52, 116–130 (1962)

  19. 19.

    Hyvärinen, H.J., Turunen, J., Vahimaa, P.: Elementary-field modeling of surface-plasmon excitation with partially coherent light. Appl. Phys. B 101, 273–282 (2010)

  20. 20.

    Porto, J.A., Garcia-Vidal, F.J., Pendry, J.B.: Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)

  21. 21.

    Weiner, J.: The electromagnetics of light transmission through subwavelength slits in metallic films. Opt. Express. 19, 16139–16153 (2011)

  22. 22.

    Wuenschell, J., Kim, H.K.: Surface plasmon dynamics in an isolated metallic nanoslit. Opt. Express. 14, 10000–10013 (2006)

  23. 23.

    Garcia-Vidal, F.J., Martin-Moreno, L., Ebbesen, T.W., Kuipers, L.: Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010)

  24. 24.

    Bose, G.: Diffractive optics based on V-shaped structures and its applications. Ph.D dissertation 245, University of Eastern Finland (2016)

  25. 25.

    Silberstein, E., Lalanne, P., Hugonin, J.P., Cao, Q.: Use of grating theories in integrated optics. J. Opt. Soc. Am. A 18, 2865–2875 (2001)

Download references


The work was supported by the Academy of Finland (Project 285880). J. Tervo is presently with Microsoft HoloLens, Keilalahdentie 2–4, 02150 Espoo, Finland.

Author information

Correspondence to Gaurav Bose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 4643 KB)

Supplementary material 1 (AVI 4643 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bose, G., Hyvärinen, H.J., Tervo, J. et al. Probing surface plasmons by bare V-shaped tips: modeling by geometrical optics and rigorous diffraction theory. Opt Rev 24, 97–104 (2017) doi:10.1007/s10043-016-0301-z

Download citation


  • Nanophotonics
  • Diffractive optics
  • Geometrical optics
  • Plasmonics