Advertisement

Conjoint use of hydraulic head and groundwater age data to detect hydrogeologic barriers

  • Sarah K. MarshallEmail author
  • Peter G. Cook
  • Leonard F. Konikow
  • Craig T. Simmons
  • Shawan Dogramaci
Paper

Abstract

Hydraulic head and groundwater age data are effective in building understanding of groundwater systems. Yet their joint role in detecting and characterising low-permeability geological structures, i.e. hydrogeologic barriers such as faults and dykes, has not been widely studied. Here, numerical flow and transport models, using MODFLOW-NWT and MT3D-USGS, were developed with different hydrogeologic barrier configurations in a hypothetical aquifer. Computed hydraulic head and groundwater age distributions were compared to those without a barrier. The conjoint use of these datasets helps in detecting vertically-oriented barriers. Two forms of recharge were compared: (1) applied across the entire aquifer surface (uniform), and (2) applied to the upstream part of the aquifer (upgradient). The hydraulic head distribution is significantly impacted by a barrier that penetrates the aquifer’s full vertical thickness. This barrier also perturbs the groundwater age distribution when upgradient recharge prevails; however, with uniform recharge, groundwater age is not successful in detecting the barrier. When a barrier is buried, such as by younger sediment, hydraulic head data also do not clearly identify the barrier. Groundwater age data could, on the other hand, prove to be useful if sampled at depth-specific intervals. These results are important for the detection and characterisation of hydrogeologic barriers, which may play a significant role in the compartmentalisation of groundwater flow, spring dynamics, and drawdown and recovery associated with groundwater extraction.

Keywords

Hydrogeologic barriers Numerical modeling Groundwater age Groundwater flow 

Utilisation conjointe des donnees piezometriques et des donnees de datation des eaux souterraines pour detecter des barrieres hydrauliques

Résumé

Les données piézométriques et de datation des eaux souterraines permettent de mieux comprendre les systèmes hydrogéologiques. Pourtant, leur rôle conjoint dans la détection et la caractérisation des structures géologiques à faible perméabilité, les barrières hydrauliques telles que les failles et dykes, n’est que très peu étudié. Ici, des modèles numériques de flux et de transport, utilisant MODFLOW-NWT et MT3D-USGS, ont été élaborés avec différentes configurations de barrières hydrauliques dans un aquifère hypothétique. Les distributions des charges hydrauliques et des âges des eaux souterraines modélisés ont été comparés à celles en l’absence de barrière. L’utilisation conjointe de ces ensembles de données aide à détecter les barrières verticales. Deux formes de recharge ont été comparées: (1) la première est appliquée sur toute la surface de l’aquifère (uniforme) et (2) la deuxième est appliquée seulement sur la partie amont de l’aquifère (amont). La distribution de la charge hydraulique est fortement impactée par une barrière qui pénètre toute l’épaisseur verticale de l’aquifère. Cette barrière perturbe également la distribution des âges des eaux souterraines lorsque la recharge en amont prévaut. Cependant, avec une recharge uniforme, l’âge des eaux souterraines ne permet pas de détecter de barrière. Lorsqu’une barrière est recouverte (par des sédiments plus récents par exemple), les données piézométriques ne permettent pas non plus d’identifier clairement cette barrière. Par contre, les données de datation des eaux souterraines se révèlent utiles si elles sont échantillonnées à des intervalles de profondeur spécifiques. Ces résultats sont importants pour la détection et la caractérisation des barrières hydrauliques, qui peuvent jouer un rôle important dans le compartimentage des circulations des eaux souterraines, la dynamique des sources, le rabattement et la remontée des niveaux piézométriques associés à l’exploitation des eaux souterraines.

Uso conjunto de datos de altura hidráulica y de edad del agua subterránea para detectar barreras hidrogeológicas

Resumen

Los datos de altura hidráulica y de edad del agua subterránea son efectivos en la construcción de la comprensión de los sistemas de agua subterránea. Sin embargo, su papel conjunto en la detección y caracterización de estructuras geológicas de baja permeabilidad, es decir, barreras hidrogeológicas como fallas y diques, no ha sido ampliamente estudiado. Aquí se desarrollaron modelos numéricos de flujo y transporte, utilizando MODFLOW-NWT y MT3D-USGS, con diferentes configuraciones de barreras hidrogeológicas en un hipotético acuífero. Se compararon las distribuciones calculadas de la altura hidráulica y la edad del agua subterránea con las que no tenían una barrera. El uso conjunto de estos conjuntos de datos ayuda a detectar las barreras de orientación vertical. Se compararon dos formas de recarga: (1) aplicarse en toda la superficie del acuífero (uniforme), y (2) aplicarse en la parte de aguas arriba del acuífero (gradiente arriba). La distribución de la altura hidráulica es impactada significativamente por una barrera vertical que penetra todo el espesor del acuífero. Esta barrera también perturba la distribución de la edad del agua subterránea cuando prevalece la recarga de nutrientes. Sin embargo, con una recarga uniforme, la edad del agua subterránea no tiene éxito en la detección de la barrera. Cuando una barrera es enterrada (como por ejemplo por sedimentos más jóvenes), los datos de la altura hidráulica tampoco identifican claramente la barrera. Por otra parte, los datos sobre la edad de las aguas subterráneas podrían resultar útiles si se toman muestras a intervalos específicos de profundidad. Estos resultados son importantes para la detección y caracterización de barreras hidrogeológicas, que pueden desempeñar un papel importante en la compartimentalización del flujo de agua subterránea, la dinámica de los manantiales y la reducción y recuperación asociadas con la extracción de agua subterránea.

联合使用水头和地下水年龄数据推断水文地质屏障

摘要

水头和地下水年龄数据对建立地下水系统的理解有效。然而, 联合使用这些数据来探知和表征低渗透性地质结构(如断层和堤坝等水文地质屏障)尚未得到广泛研究。因此, 在假设的含水层中, 使用MODFLOW-NWT和MT3D-USGS建立了具有不同水文地质屏障构造的水流和运移的数值模型。将计算出的水头和地下水年龄分布与无屏障结果进行了比较。这些数据集的联合使用有助于探知垂直方向的障碍。比较了两种补给形式:(1)应用于整个含水层表面(均匀), 以及(2)应用于含水层的上游部分(反梯度)。水头分布受到穿透含水层整个垂直厚度屏障的显著影响。当反梯度的补给存在时, 屏障也会影响地下水的年龄分布。但是, 如果均匀补给时, 则地下水年龄无法成功探知到屏障。当屏障被掩埋时(例如被较年轻的沉积物所掩盖), 水头数据也不能清楚地识别出屏障。另一方面, 如果以特定深度的间隔进行采样, 则地下水年龄数据可能会很有用。这些结果对于水文地质屏障的探知和表征很重要, 这些屏障可能在划分地下水流、泉动力以及与地下水开采相关的降深和恢复中发挥重要作用。

Uso conjunto dos dados de carga hidráulica e de datação das águas subterrâneas para detectar barreiras hidrogeológicas

Resumo

Dados de carga hidráulica e de datação de águas subterrâneas são eficazes para a compreensão dos sistemas de águas subterrâneas. No entanto, seu papel na detecção e caracterização de estruturas geológicas de baixa permeabilidade, ou seja, barreiras hidrogeológicas como falhas e diques, ainda não foi amplamente estudado. Aqui, modelos números de fluxo e transporte, usando o MODFLOW-NWT e MT3D-USGS, foram desenvolvidos com diferentes configurações de barreiras hidrogeológicas em um aquífero hipotético. As distribuições de carga hidráulica e idade das águas subterrâneas computadas foram comparadas àquelas sem barreira. O uso conjunto desses dados ajuda na detecção de barreiras verticalmente orientadas. Duas formas de recarga foram comparadas: (1) aplicada em toda superfície do aquífero (uniforme), e (2) aplicada à parte a montante do aquífero (gradiente ascendente). A distribuição da carga hidráulica é significativamente impactada por uma barreira que penetra toda a espessura vertical do aquífero. Essa barreira também perturba a distribuição da idade das águas subterrâneas quando a recarga de gradiente ascendente prevalece. Entretanto, com a recarga uniforme, a idade das águas subterrâneas não consegue detectar a barreira. Quando uma barreira é enterrada (como por sedimentos mais jovens), os dados da carga hidráulica também não identificam claramente a barreira. A idade das águas subterrâneas pode, por outro lado, revelar-se úteis se amostrados em intervalos específicos de profundidade. Esses resultados são importantes para a detecção e caracterização de barreiras hidrogeológicas, que podem desempenhar um papel significativo na compartimentação do fluxo das águas subterrâneas, dinâmicas de nascentes e na retirada e recuperação associadas à extração de águas subterrâneas.

Notes

Acknowledgements

This work was undertaken as a part of a collaborative project between the National Centre for Groundwater Research and Training (NCGRT) and Rio Tinto Iron Ore. The corresponding author would like to thank the United States Geological Survey for hosting her as an exchange scholar. We are grateful to Jeff Starn, as well as two anonymous reviewers, for their helpful comments.

Funding information

Funding was provided by the Australian Government Research Training Program, the Australian Research Council, through Linkage Grant LP150100395 and by Rio Tinto Iron Ore.

References

  1. Allen DM, Michel FA (1999) Characterizing a faulted aquifer by field testing and numerical simulation. Groundwater 37(5):718–728CrossRefGoogle Scholar
  2. Apaydin A (2010) Relation of tectonic structure to groundwater flow in the Beypazari region, NW Anatolia, Turkey. Hydrogeol J 18(6):1343–1356CrossRefGoogle Scholar
  3. Babiker M, Gudmundsson A (2004) The effect of dykes and faults on groundwater flow in an arid land: the Red Sea Hills, Sudan. J Hydrol 297:256–273CrossRefGoogle Scholar
  4. Bakker M, Post V, Langevin CD, Hughes JD, White JT, Starn JJ, Fienen MN (2016) Scripting MODFLOW model development using Python and FloPy. Groundwater 54(5):733–739CrossRefGoogle Scholar
  5. Batlle-Aguilar J, Banks EW, Batelaan O, Kipfer R, Brennwald MS, Cook PG (2017) Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers. J Hydrol 546:150–165CrossRefGoogle Scholar
  6. Bedekar V, Morway ED, Langevin CD, Tonkin M (2016) MT3D-USGS version 1: a U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW. US Geol Surv Tech Method 6-A53Google Scholar
  7. Bense VF, van Balen RT (2004) The effect of fault relay and clay smearing on groundwater flow patterns in the Lower Rhine Embayment. Basin Res 16:397–411CrossRefGoogle Scholar
  8. Bense VF, Person MA (2006) Faults as conduit-barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resour Res 42(5):1–18CrossRefGoogle Scholar
  9. Bense VF, van Balen RT, De Vries JJ (2003) The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: an overview. Neth J Geosci 82(1):41–54Google Scholar
  10. Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev 127:171–192CrossRefGoogle Scholar
  11. Bredehoeft JD, Belitz K, Sharp-Hansen S (1992) The hydrodynamics of the Big Horn Basin: a study of the role of faults. AAPG Bull 76(4):530–546Google Scholar
  12. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24(11):1025–1028CrossRefGoogle Scholar
  13. Castro MC, Goblet P (2005) Calculation of ground water age: a comparative analysis. Groundwater 43(3):368–380CrossRefGoogle Scholar
  14. Cilona A, Aydin A, Johnson NM (2015) Permeability of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution in the Chatsworth Formation, California, USA. Hydrogeol J 23(2):405–419CrossRefGoogle Scholar
  15. Comte J-C, Wilson C, Ofterdinger U, Gonzalez-Quiros A (2017) Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion: a field-scale multiphysics approach and parameter evaluation. Water Resour Res 53:2171–2198CrossRefGoogle Scholar
  16. Cook PG, Bӧhlke JK (2000) Determining timescales for groundwater flow and solute transport. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 1–30CrossRefGoogle Scholar
  17. Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He and 85Kr. J Hydrol 191:245–265CrossRefGoogle Scholar
  18. Cook PG, Dogramaci S, McCallum JL, Hedley J (2016) Groundwater age, mixing and flow rates in the vicinity of large open pit mines, Pilbara region, northwestern Australia. Hydrogeol J 25(1):39–53CrossRefGoogle Scholar
  19. Dai Z, Keating CW, Gable D, Levitt HJ, Simmons A (2010) Stepwise inversion of a groundwater flow model with multi-scale observation data. Hydrogeol J 18:607–624CrossRefGoogle Scholar
  20. Ferrill DA, Sims DW, Waiting DJ, Morris AP, Franklin NM, Schultz AL (2004) Structural framework of the Edwards aquifer recharge zone in south-central Texas. GSA Bull 116(3–4):407–418CrossRefGoogle Scholar
  21. Ferris JG, Knowles DB, Brown RH, Stallman RW (1962) Theory of aquifer tests. US Geol Surv Water Suppl Pap 1536-EGoogle Scholar
  22. Gleeson T, Novakowski K (2009) Identifying watershed-scale barriers to groundwater flow: lineaments in the Canadian Shield. GSA Bull 121(3–4):333–347CrossRefGoogle Scholar
  23. Goode DJ (1996) Direct simulation of groundwater age. Water Resour Res 32(2):289–296CrossRefGoogle Scholar
  24. Gumm LP, Bense VF, Dennis PF, Hiscock KM, Cremer N, Simon S (2016) Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany. Hydrogeol J 24(1):99–108CrossRefGoogle Scholar
  25. Harp D, Dai Z, Wolfsberg AV, Vrugt JA, Robinson BA, Vesselinov VV (2008) Aquifer structure identification using stochastic inversion. Geophys Res Lett 35:1–5CrossRefGoogle Scholar
  26. Konikow LF, Hornberger GZ, Putnam LD, Shapiro AM, Zinn BA (2008) The use of age as a calibration target. In: Refsgaard JC, Kovar K, Haarder E, Nygaard E (eds) Calibration and reliability in groundwater modelling: credibility of modelling. IAHS Publ. 320, IAHS, Wallingford, UK, pp 250–256Google Scholar
  27. Koohbor D, Fahs M, Ataie-Ashtiani B, Belfort B, Simmons CT, Younes A (2019) Uncertainty analysis for seawater intrusion in fractures coastal aquifers: effects of fracture location, aperture, density and hydrodynamic parameters. J Hydrol 571:159–177CrossRefGoogle Scholar
  28. Kruseman GP, de Ridder NA (2000) Analysis and evaluation of pumping test data, 2nd edn. International Institute for Land Reclamation and Improvement, Wageningen, The NetherlandsGoogle Scholar
  29. Larocque M, Cook PG, Haaken K, Simmons CT (2009) Estimating flow using tracers and hydraulics in synthetic heterogeneous aquifers. Groundwater 47(6):786–796CrossRefGoogle Scholar
  30. Marshall SK, Cook PG, Miller AD, Simmons CT, Dogramaci S (2019) The effect of undetected barriers on groundwater drawdown and recovery. Groundwater 57(5):718–726.  https://doi.org/10.1111/gwat.12856 CrossRefGoogle Scholar
  31. Manning AH, Solomon DK (2003) Using noble gases to investigate mountain-front recharge. J Hydrol 275:194–207CrossRefGoogle Scholar
  32. Mayer A, May W, Lukkarila C (2007) Estimation of fault-zone conductance by calibration of a regional groundwater flow model: Desert Hot Springs, California. Hydrogeol J 15(6):1093–1106CrossRefGoogle Scholar
  33. McCallum JL, Cook PG, Simmons CT, Werner AD (2014) Bias of apparent tracer ages in heterogeneous environments. Groundwater 52(2):239–250CrossRefGoogle Scholar
  34. Niswonger RG, Panday S, Ibaraki M (2011) MODFLOW-NWT, A Newton formulation for MODFLOW-2005. US Geol Surv Tech Methods 6–A37, 44 ppGoogle Scholar
  35. Raiber M, Webb JA, Cendon DI, White PA, Jacobsen GE (2015) Environmental isotopes meet 3D geological modelling: conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of south-western Victoria, Australia. J Hydrol 527:262–280CrossRefGoogle Scholar
  36. Rajabpour H, Vaezihir A (2017) Hydrogeological studies to identify the trend of concealed section of the North Tabriz Fault (Iran). Groundwater 55(3):327–333CrossRefGoogle Scholar
  37. Sanford WE (2011) Calibration of models using groundwater age. Hydrogeol J 19(1):13–16CrossRefGoogle Scholar
  38. Sebben ML, Werner AD (2016) On the effects of preferential or barrier flow features on solute plumes in permeable porous media. Adv Water Resour 98:32–46CrossRefGoogle Scholar
  39. Singh SK (2001) Identifying impervious boundary and aquifer parameters from pump-test data. J Hydr Eng 127(4):280–285.  https://doi.org/10.1061/(ASCE)0733-9429(2001)127:4(280) CrossRefGoogle Scholar
  40. Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s great Artesian Basin. Hydrogeol J 23:949–960CrossRefGoogle Scholar
  41. Stamatis G, Voudouris K (2003) Marine and human activity influences on the groundwater quality of southern Korinthos area (Greece). Hydrol Process 17:2327–2345.  https://doi.org/10.1002/hyp.1245 CrossRefGoogle Scholar
  42. Sun X, Yang P, Xiang Y, Si X, Liu D (2018) Across-fault distributions of radon concentrations in soil gas for different tectonic environments. Geosci J 22(2):227–239CrossRefGoogle Scholar
  43. Umeda K, Ninomiya A (2009) Helium isotopes as a tool for detecting concealed active faults. Geochem Geophys Geosyst 10(8):1–10CrossRefGoogle Scholar
  44. Underwood SC, McCallum JL, Cook PG, Simmons CT, Dogramaci S, Purtschert R, Siade AJ, Prommer H (2018) Physical and chemical controls on the simultaneous occurrence of young and old groundwater inferred from multiple age tracers. Water Resour Res 54:9514–9532.  https://doi.org/10.1029/2018WR022800 CrossRefGoogle Scholar
  45. Valdes D, Dupont J, Laignel B, Ogier S, Leboulanger T, Mahler BJ (2007) A spatial analysis of structural controls on karst groundwater geochemistry at a regional scale. J Hydrol 340:244–255CrossRefGoogle Scholar
  46. Walker GR, Cook PG (1991) The importance of considering diffusion when using carbon-14 to estimate groundwater recharge to an unconfined aquifer. J Hydrol 128:41–48CrossRefGoogle Scholar
  47. Weissman GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):1198CrossRefGoogle Scholar
  48. Wilkes SM, Clement TP, Otto CJ (2004) Characterisation of the hydrogeology of the Augustus River catchment, western Australia. Hydrogeol J 12:209–223CrossRefGoogle Scholar
  49. Zinn BA, Konikow LF (2007a) Potential effects of regional pumpage on groundwater age distribution. Water Resour Res 43.  https://doi.org/10.1029/2006WR004865
  50. Zinn BA, Konikow LF (2007b) Effects of intraborehole flow on groundwater age distribution. Hydrogeol J 15(4):633–643.  https://doi.org/10.1007/s10040-006-0139-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Sarah K. Marshall
    • 1
    Email author
  • Peter G. Cook
    • 1
  • Leonard F. Konikow
    • 2
  • Craig T. Simmons
    • 1
  • Shawan Dogramaci
    • 3
  1. 1.National Centre for Groundwater Research and Training (NCGRT), College of Science and EngineeringFlinders UniversityAdelaideAustralia
  2. 2.United States Geological Survey (USGS)RestonUSA
  3. 3.Rio Tinto Iron Ore, Wesley QuarterPerthAustralia

Personalised recommendations