Advertisement

Hydrogeology Journal

, Volume 27, Issue 8, pp 2789–2802 | Cite as

Estimates of groundwater depletion under extreme drought in the Brazilian semi-arid region using GRACE satellite data: application for a small-scale aquifer

  • Maurício D. MelatiEmail author
  • Ayan S. Fleischmann
  • Fernando M. Fan
  • Rodrigo C. D. Paiva
  • Gustavo B. Athayde
Paper
  • 83 Downloads

Abstract

The temporal and spatial monitoring of groundwater levels is among the most widely used techniques for understanding groundwater reserves, which is essential for the management of regions with drought-related issues. Between 2010 and 2017, the Brazilian semi-arid region suffered a severe drought, presenting intensity and societal impacts undetected in decades. This research aimed to understand how Gravity Recovery and Climate Experiment (GRACE) data can be used as a tool for monitoring groundwater reserves in one of the most important aquifers in the Araripe Sedimentary Basin (Middle Aquifer System), located in a developing region with scarce amounts of data, and where 84,000,000 m3 of groundwater is abstracted annually through pumping. Groundwater storage (GWS) in-situ data were related to GWS estimates based on a combination of GRACE-based terrestrial water storage (TWS with both mascon and spherical harmonic solutions) and Global Land Data Assimilation System (GLDAS) soil moisture (CLM, MOS, NOAH and VIC models were evaluated). Results were analyzed with Nash-Sutcliffe (NS) and Pearson correlation coefficient metrics, and showed that the GWS GRACE-based estimate using the Community Land Model (CLM) land-surface model was more suitable for representing aquifer storage variations. Seven wells (58%) demonstrated a NS > 0.50 for both GWS GRACE-based solutions. In conclusion, GWS GRACE-based methodology has potential for monitoring the 1,394-km2 outcrop area of the Middle Aquifer System.

Keywords

Groundwater monitoring Brazil Arid regions Satellite imagery 

Estimation de l’épuisement des eaux souterraines sous des conditions de sècheresse extrême dans une région semi-aride du Brésil à l’aide des données satellite de GRACE: application pour un aquifère de faible extension

Résumé

Le suivi spatio-temporel des niveaux piézométriques est la technique la plus utilisée pour comprendre les réserves en eau souterraine, donnée essentielle pour la gestion des régions ayant des problèmes liés à la sècheresse. Entre 2010 et 2017, les régions semi-arides du Brésil ont subi de nombreuses sècheresses caractérisées par leur intensité et des impacts sur la société, non relevés depuis des décennies. Cette recherche a consisté à comprendre comment les données de GRACE (Gravity Recovery and Climate Experiment) peuvent être utilisées comme outil de suivi des ressources en eau souterraine dans un des aquifères le plus important du bassin sédimentaire de Araripe (Système Aquifère Intermédiaire) localisé dans une région en développement disposant de peu de données, et où 84,000,000 m3 d’eau sont exploités par pompage annuellement. Les données de stockage d’eau (GWS) in situ ont été mises en relation avec les estimations de GWS basées sur une combinaison des données de GRACE concernant le stockage d’eau terrestre (SET avec des solutions de Mascon et harmoniques sphériques) et des données d’humidité des sols (modèles CLM, MOS, NOAH et VIC ont été évalués) du GLDAS (système d’assimilation des données globales de sols). Les résultats ont été analysés avec les mesures du coefficient de corrélation de Nash-Sutcliffe (NS) et de Pearson, et ont montré que l’estimation de GWS avec GRACE utilisant le modèle de surface terrestre CLM (Community Land Model) était plus appropriée pour la représentation des variations du stockage de l’eau dans l’aquifère. Sept forages (58%) montrent un NS > 0.50 pour le GWS basé sur les données de GRACE. En conclusion, la méthode GWS basée sur les données de GRACE représente un potentiel pour le suivi du Système Aquifère Intermédiaire de 1,394 km2 de surface à l’affleurement.

Estimaciones del agotamiento del agua subterránea durante una sequía Extrema en la región semiárida brasileña utilizando datos del satélite GRACE: aplicación para un acuífero a pequeña escala

Resumen

El monitoreo temporal y espacial de los niveles de agua subterránea es una de las técnicas más utilizadas para comprender las reservas de agua subterránea, que es esencial para la gestión de las regiones con problemas relacionados con la sequía. Entre 2010 y 2017, la región semiárida brasileña sufrió una grave sequía, con una intensidad e impactos sociales no detectados en décadas. El objetivo de esta investigación fue entender cómo los datos del Gravity Recovery and Climate Experiment (GRACE) pueden ser utilizados como una herramienta para monitorear las reservas de agua subterránea en uno de los acuíferos más importantes de la Cuenca Sedimentaria de Araripe (Sistema Acuífero Medio), ubicada en una región en desarrollo con escasas cantidades de datos, y donde se extraen 84,000,000 m3 de agua subterránea anualmente a través del bombeo. Los datos in situ de almacenamiento de aguas subterráneas (GWS) se relacionaron con las estimaciones de GWS basadas en una combinación de almacenamiento de agua terrestre basado en GRACE (TWS con soluciones armónicas tanto de mascon como esféricas) y humedad del suelo Global Land Data Assimilation System (GLDAS) (se evaluaron los modelos CLM, MOS, NOAH y VIC). Los resultados fueron analizados con métricas de coeficiente de correlación de Nash-Sutcliffe (NS) y Pearson, y mostraron que la estimación basada en GWS GRACE utilizando el modelo de superficie terrestre del Community Land Model (CLM) era más adecuada para representar las variaciones en el almacenamiento de acuíferos. Siete pozos (58%) demostraron una NS > 0.50 para ambas soluciones basadas en GWS GRACE. En conclusión, la metodología basada en GWS GRACE tiene potencial para monitorear el área de afloramiento de 1,394 km2 del Sistema Acuífero Medio.

利用GRACE卫星数据估算巴西半干旱地区极端干旱下的地下水枯竭:小尺度含水层的应用

摘要

地下水位的时空监测是了解地下水储量最广泛使用的技术之一,这对于管理与干旱有关的地区至关重要。在2010年至2017年期间,巴西半干旱地区遭受了严重的干旱,造成了数十年来未曾发现的强度和社会影响。这项研究旨在了解重力恢复和气候实验(GRACE)数据如何用作监测Araripe沉积盆地(中尺度含水层系统)中最重要的含水层之一的地下水储量的工具,该区域位于大量数据欠缺的发展中地区,而且每年抽水抽取的地下水约84,000,000 m3。地下水储量(GWS)实地观测数据与基于GRACE的地面水储量(TWS包括mascon解和球谐函数解)和全球陆面数据同化系统(GLDAS)土壤含水量(CLM,MOS ,NOAH和VIC模型进行了评估)的联合数据关联起来。采用Nash-Sutcliffe(NS)和Pearson相关系数指标对结果进行了分析,结果表明,使用陆面过程模型(CLM)地表模型进行的基于GWS GRACE的估算更适合于表示含水层存储量的变化。七口井(58%)表明两种基于GWS GRACE解的NS均大于0.50。总之,基于GWS GRACE的方法具有监测中尺度含水层系统1,394km2出露面积的潜力。

Estimativas de depleção de água subterrânea sob seca severa no semiárido brasileiro usando dados do satélite GRACE: aplicação para um aquífero de pequena escala

Resumo

O monitoramento da variação temporal e espacial dos níveis dos aquíferos está entre as técnicas mais usadas para entender as reservas hídricas subterrâneas e é essencial para a gestão hídrica de regiões com problemas de seca. Entre 2010 e 2017, o semiárido brasileiro foi submetido a uma seca severa, apresentando intensidade e impacto social não observados em décadas. Esta pesquisa buscou entender como os dados do Gravity Recovery and Climate Experiment (GRACE) podem ser usados para monitorar as reservas hídricas subterrâneas de um dos aquíferos mais importantes da Bacia Sedimentar do Araripe (Sistema Aquífero Médio (SAM)), localizado em uma região de pouca disponibilidade de dados e onde 84,000,000 m3 de água subterrânea são retirados anualmente por bombeamento. As variações dos níveis de água subterrânea observados (GWS) foram relacionadas com estimativas (GWS GRACE-based) baseadas na combinação da variação do total de água armazenada (TWS) do GRACE (soluções mascon e spherical harmonic) e dos modelos de superfície terrestre do Global Land Data Assimilation System (GLDAS) para umidade do solo (modelos CLM, MOS, NOAH e VIC). Os resultados foram analisados com os estimadores estatísticos Nash-Sutcliffe (NS) e coeficiente de correlação de Pearson, e mostraram que as estimativas de GWS GRACE-based usando o modelo Community Land Model (CLM) foram mais adequadas para representar as variações das reservas de água do aquífero. Sete poços (58%) apresentaram NS > 0.50 para as ambas as soluções de GWS GRACE-based usadas. Dessa forma, a metodologia GWS GRACE-based mostrou potencial para monitorar os 1,394-km2 da área de afloramento do SAM.

Notes

Acknowledgements

The authors would like to thank the Ceará Water Resources Management Company (COGERH) for supporting and providing the necessary data for the development of this research.

Funding information

The Hydraulic Research Institute (IPH) of the Federal University of Rio Grande do Sul (UFRGS), and the Brazilian National Council for Scientific and Technological Development (CNPq) are acknowledged for funding this research.

References

  1. Alvalá RCS, Cunha APMA, Brito SSB, Seluchi ME, Marengo JA, Moraes OLL, Carvalho MAC (2017) Drought monitoring in the Brazilian semiarid region. An Acad Bras Cienc 0–0.  https://doi.org/10.1590/0001-3765201720170209
  2. Becker M, Meyssignac B, Xavier L, Cazenave A, Alkama R, Decharme B (2011) Past terrestrial water storage (1980–2008) in the Amazon Basin reconstructed from GRACE and in situ river gauging data. Hydrol Earth Syst Sci 15:533–546.  https://doi.org/10.5194/hess-15-533-2011 CrossRefGoogle Scholar
  3. Bhanja SN, Mukherjee A, Saha D, Velicogna I, Famiglietti S (2016) Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J Hydrol 543:729–738.  https://doi.org/10.1016/j.jhydrol.2016.10.042 CrossRefGoogle Scholar
  4. Brasil (2019) HidroWeb: hydrological information system. http://www.snirh.gov.br/hidroweb/publico/apresentacao.jsf. Accessed 30 September 2019
  5. Brito SSB, Cunha APMA, Cunningham CC, Alvalá RC, Marengo JA, Carvalho MA (2017) Frequency, duration and severity of drought in the semiarid northeast Brazil region. Int J Climatol 1–13.  https://doi.org/10.1002/joc.5225 CrossRefGoogle Scholar
  6. Castle S, Thomas B, Reager J, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River basin. Geophys Res Lett 10:5904–5911.  https://doi.org/10.1002/2014GL061055 CrossRefGoogle Scholar
  7. Chen JL, Wilson CR, Tapley BD, Scanlon B, Güntner A (2016) Long-term groundwater storage change in Victoria, Australia from satellite gravity and in situ observations. Glob Planet Change 139:56–65.  https://doi.org/10.1016/j.gloplacha.2016.01.002 CrossRefGoogle Scholar
  8. Cheng M, Ries JC, Tapley BD (2011) Variations of the Earth’s figure axis from satellite laser ranging and GRACE. J Geophys Res Solid Earth 116:1–14.  https://doi.org/10.1029/2010JB000850 CrossRefGoogle Scholar
  9. Chinnasamy P, Agoramoorthy G (2015) Groundwater storage and depletion trends in Tamil Nadu. Water Resour Manag 29:14.  https://doi.org/10.1007/s11269-015-0932-z CrossRefGoogle Scholar
  10. COGERH (2009) Plano de Monitoramento e Gestão dos Aquíferos da Bacia Sedimentar do Araripe [Araripe Sedimentary Basin Aquifer Monitoring and Management Plan]. Water Resources Management Company of Ceará, Fortaleza, Brazil, 272 ppGoogle Scholar
  11. COGERH (2018) Relatório final do balanço hídrico considerando a demanda e oferta por município [Final water balance report considering demand and supply by municipality]. Water Resources Management Company of Ceará, Fortaleza, Brazil, 242 ppGoogle Scholar
  12. Costa WD, Feitosa FAC (2007) Comportamento das bacias sedimentares da região semi-árida do Nordeste Brasileiro: caracterização hidrogeológica (meta C) [Sedimentary basin behavior of the semi-arid region of Northeast Brazil: hydrogeological characterization (goal C)]. Águas Subterraneas, São Paulo, BrazilGoogle Scholar
  13. Delgado JM, Voss S, Bürger G, Vormoor K, Murawski A, Rodrigues M, Martins E, Vasconcelos Junior F, Francke T (2017) Seasonal drought prediction for semiarid northeast Brazil: verification of six hydro-meteorological forecast products. Hydrol Earth Syst Sci 1–18.  https://doi.org/10.5194/hess-2017-572
  14. Diniz JAO, Monteiro AB, de Silva RC, de Paula TLF (2014) Mapa Hidrogeológico do Brasil ao Milionésimo [Hydrogeological map of Brazil to the millionth]. Serviço Geológico do Brasil, Brasilia, 120 ppGoogle Scholar
  15. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50:5698–5720.  https://doi.org/10.1002/2014WR015595 CrossRefGoogle Scholar
  16. Famiglietti JS, Lo M, Ho SL, Bethune J, Anderson KJ, Syed TH, Swenson SC, de Linage CR, Rodell M (2011) Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys Res Lett 38:2–5.  https://doi.org/10.1029/2010GL046442 CrossRefGoogle Scholar
  17. Feng W, Zhong M, Lemoine JM, Biancale R, Hsu HT, Xia J (2013) Evaluation of groundwater depletion in north China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res 49:2110–2118.  https://doi.org/10.1002/wrcr.20192 CrossRefGoogle Scholar
  18. Ferreira FS da, Moreno NBC da, Evangelista JSB da, Silva ACA da, Amancio LCS (2014) A fruticultura no Ceará: evolução e tendências na região metropolitana do Cariri [Fruit farming in Ceará: evolution and trends in the metropolitan region of Cariri]. Cent Científico Conhecer Enciclopédia Biosf 10:1–13Google Scholar
  19. Frappart F, Ramillien G (2018) Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: a review. Remote Sens 10:829.  https://doi.org/10.3390/rs10060829 CrossRefGoogle Scholar
  20. Frappart F, Ramillien G, Ronchail J (2013) Changes in terrestrial water storage versus rainfall and. Int J Climatol 3046:3029–3046.  https://doi.org/10.1002/joc.3647 CrossRefGoogle Scholar
  21. Frappart F, Papa F, Güntner A, Tomasella J, Pfeffer J, Ramillien G, Emilio T, Schietti J, Seoane L, da Silva CJ, Moreira DM, Bonnet M-P, Seyler F (2019) The spatio-temporal variability of groundwater storage in the Amazon River basin. Adv Water Resour 124:41–52.  https://doi.org/10.1016/j.advwatres.2018.12.005 CrossRefGoogle Scholar
  22. Geruo A, Wahr J, Zhong S (2013) Computations of the viscoelastic response of a 3-D compressible earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada. Geophys J Int 192:557–572.  https://doi.org/10.1093/gji/ggs030 CrossRefGoogle Scholar
  23. Getirana A (2016) Extreme water deficit in Brazil detected from space. J Hydrometeorol 17:591–599.  https://doi.org/10.1175/JHM-D-15-0096.1 CrossRefGoogle Scholar
  24. Gonçalvès J, Petersen J, Deschamps P, Hamelin B, Baba-Sy O (2013) Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys Res Lett 40:2673–2678.  https://doi.org/10.1002/grl.50478 CrossRefGoogle Scholar
  25. Guimberteau M, Ducharne A, Ciais P, Boisier JP, Peng S, Weirdt MD, Verbeeck H (2014) Testing conceptual and physically based soil hydrology schemes against observations for the Amazon Basin. Geosci Model Dev 7:1115–1136.  https://doi.org/10.5194/gmd-7-1115-2014 CrossRefGoogle Scholar
  26. Gutiérrez APA, Engle NL, De Nys E, Molejón C, Martins ES (2014) Drought preparedness in Brazil. Weather Clim Extrem 3:95–106.  https://doi.org/10.1016/j.wace.2013.12.001 CrossRefGoogle Scholar
  27. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109.  https://doi.org/10.1007/s10040-001-0178-0 CrossRefGoogle Scholar
  28. Henry CM, Allen DM, Huang J (2011) Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeol J 19:741–755.  https://doi.org/10.1007/s10040-011-0724-3 CrossRefGoogle Scholar
  29. Hu K, Awange JL, Khandu FE, Goncalves RM, Fleming K (2017) Hydrogeological characterisation of groundwater over Brazil using remotely sensed and model products. Sci Total Environ 599–600:372–386.  https://doi.org/10.1016/j.scitotenv.2017.04.188 CrossRefGoogle Scholar
  30. Huang Z, Pan Y, Gong H, Yeh PJ-F, Li X, Zhou D, Zhao W (2015) Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China plain. Geophys Res Lett 42:1791–1799.  https://doi.org/10.1002/2014GL062498 CrossRefGoogle Scholar
  31. Huang J, Pavlic G, Rivera A, Palombi D, Smerdon B (2016) Mapping groundwater storage variations with GRACE: a case study in Alberta, Canada. Hydrogeol J 24:1663–1680.  https://doi.org/10.1007/s10040-016-1412-0 CrossRefGoogle Scholar
  32. Katpatal YB, Rishma C, Singh CK (2017) Sensitivity of the Gravity Recovery and Climate Experiment (GRACE) to the complexity of aquifer systems for monitoring of groundwater. Hydrogeol J.  https://doi.org/10.1007/s10040-017-1686-x CrossRefGoogle Scholar
  33. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48:1–11.  https://doi.org/10.1029/2011WR011453 CrossRefGoogle Scholar
  34. Long H, Huang W, Yang X, Dong Y (2012) The potential of MODIS for drought monitoring in northern China. Int Geosci Remote Sens Symp 6412–6415.  https://doi.org/10.1109/IGARSS.2012.6352727
  35. Long D, Chen X, Scanlon BR, Wada Y, Hong Y, Singh VP, Chen Y, Wang C, Han Z, Yang W (2016) Have GRACE satellites overestimated groundwater depletion in the Northwest India aquifer? Sci Rep 6:1–11.  https://doi.org/10.1038/srep24398 CrossRefGoogle Scholar
  36. Marengo JA, Alves LM, Alvala RC., Cunha AP, Brito S, Moraes OLL (2017) Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. An Acad Bras Cienc 1–13.  https://doi.org/10.1590/0001-3765201720170206 CrossRefGoogle Scholar
  37. Mendonça LAR (2001) Recursos hídricos da chapada do Araripe [Araripe plateau water resources]. Universidade Federal do Ceará, Fortaleza, BrazilGoogle Scholar
  38. Mendonça LAR (2006) Comportamento dos aquíferos do Cariri [Cariri aquifer behavior]. Universidade Federal do Ceará, Fortaleza, Brazil, 30 ppGoogle Scholar
  39. Mont’Alverne AAF, Dantas JRA, Lopes CF (1996) Projeto de Avaliação Hidrogeológica da Bacia Sedimentar do Araripe [Araripe Sedimentary Basin Hydrogeological Assessment Project]. Nacional de Perfuradores de Poços, Sao Paulo, 1996, 101 ppGoogle Scholar
  40. Niu G-Y, Yang Z-L, Dickinson RE, Gulden LE, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112:D07103.  https://doi.org/10.1029/2006JD007522 CrossRefGoogle Scholar
  41. Paiva RCD de, Buarque DC, Collischonn W, Bonnet M-P, Frappart F, Calmant S, Mendes CAB (2013) Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin. Water Resour Res 49:1226–1243.  https://doi.org/10.1002/wrcr.20067 CrossRefGoogle Scholar
  42. Panda DK, Wahr J (2016) Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resour Res 52:135–149.  https://doi.org/10.1002/2015WR017797 CrossRefGoogle Scholar
  43. Paredes-Trejo F, Barbosa H (2017) Evaluation of the SMOS-derived soil water deficit index as agricultural drought index in northeast of Brazil. Water 9:21.  https://doi.org/10.3390/w9060377 CrossRefGoogle Scholar
  44. Peltier WR, Argus DF, Drummond R (2017) Comment on “an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J Geophys Res Solid Earth 123(2):2019–2028Google Scholar
  45. Pinto EJA de, Azambuja AMS de, Farias JAM, Salgueiro JPB de, Pickbrenner K (2014) Atlas pluviométrico do Brasil [Rainfall Atlas of Brazil]. CPRM, BrasiliaGoogle Scholar
  46. Richey AS, Thomas BF, Lo MH, Reager JT, Famiglietti JS, Voss K, Swenson S, Rodell M (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51:5217–5237.  https://doi.org/10.1002/2015WR017349 CrossRefGoogle Scholar
  47. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The Global Land Data Assimilation System. Am Meteorol Soc.  https://doi.org/10.1175/BAMS-85-3-381 CrossRefGoogle Scholar
  48. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166.  https://doi.org/10.1007/s10040-006-0103-7 CrossRefGoogle Scholar
  49. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002.  https://doi.org/10.1038/nature08238 CrossRefGoogle Scholar
  50. Scanlon BR, Longuevergne L, Long D (2012) Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resour Res 48:1–9.  https://doi.org/10.1029/2011WR011312 CrossRefGoogle Scholar
  51. Shamsudduha M, Taylor RG, Longuevergne L (2012) Monitoring groundwater storage changes in the highly seasonal humid tropics: validation of GRACE measurements in the Bengal Basin. Water Resour Res 48:1–12.  https://doi.org/10.1029/2011WR010993 CrossRefGoogle Scholar
  52. Strassberg G, Scanlon BR, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett 34:1–5.  https://doi.org/10.1029/2007GL030139 CrossRefGoogle Scholar
  53. Strassberg G, Scanlon BR, Chambers D Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains Aquifer, Central United States. Water Resour Res 45:1–10.  https://doi.org/10.1029/2008WR006892
  54. SUDENE (1967) Estudo Geral de Base do Vale do Jaguaribe [Jaguaribe Valley General Baseline Study]. SUDENE, Recif, Brazil, 245 ppGoogle Scholar
  55. Sun AY (2013) Predicting groundwater level changes using GRACE data. Water Resour Res 49:5900–5912.  https://doi.org/10.1002/wrcr.20421 CrossRefGoogle Scholar
  56. Swenson S, Yeh PJF, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:1–5.  https://doi.org/10.1029/2006GL026962 CrossRefGoogle Scholar
  57. Swenson S, Chambers D, Wahr J (2008a) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res Solid Earth 113:1–12.  https://doi.org/10.1029/2007JB005338 CrossRefGoogle Scholar
  58. Swenson S, Famiglietti J, Basara J, Wahr J (2008b) Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data. Water Resour Res 44:1–12.  https://doi.org/10.1029/2007WR006057 CrossRefGoogle Scholar
  59. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The Gravity Recovery and Climate Experiment: mission overview and early results. Geophys Res Lett 31:1–4.  https://doi.org/10.1029/2004GL019920 CrossRefGoogle Scholar
  60. Vasconcelos SMS, Teixeira ZA, Neto JAC, Luna RM (2013) Estimativa da Reserva Renovável dos Sistemas Aquíferos da Porção Oriental da Bacia Sedimentar do Araripe [Estimate of the Renewable Reserve of Araripe Sedimentary Basin Eastern Aquifer Systems]. Rev Bras Recur Hídricos 18:99–109.  https://doi.org/10.21168/rbrh.v18n1.p99-109 CrossRefGoogle Scholar
  61. Watkins MM, Wiese DN, Yuan D, Boening C, Landerer FW (2015) Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J Geophys Res Solid Earth Res 120:2648–2671.  https://doi.org/10.1002/2014JB011547 CrossRefGoogle Scholar
  62. Wiese DN, Landerer FW, Watkins MM (2016) Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Water Resour Res 52:7490–7502.  https://doi.org/10.1002/2016WR019344 CrossRefGoogle Scholar
  63. Xavier L, Becker M, Cazenave A, Longuevergne L, Llovel W, Rotunno Filho OC (2010) Interannual variability in water storage over 2003-2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens Environ 114:1629–1637.  https://doi.org/10.1016/j.rse.2010.02.005 CrossRefGoogle Scholar
  64. Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:1–7.  https://doi.org/10.1029/2006WR005374 CrossRefGoogle Scholar
  65. Yirdaw SZ, Snelgrove KR (2011) Regional groundwater storage from GRACE over the Assiniboine Delta aquifer (ADA) of Manitoba regional groundwater storage from GRACE over the Assiniboine Delta aquifer (ADA) of Manitoba. Atmos.  https://doi.org/10.1080/07055900.2011.623915 CrossRefGoogle Scholar
  66. Zhang D, Liu X, Bai P (2019) Assessment of hydrological drought and its recovery time for eight tributaries of the Yangtze River (China) based on downscaled GRACE data. J Hydrol 568:592–603.  https://doi.org/10.1016/j.jhydrol.2018.11.030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maurício D. Melati
    • 1
    Email author
  • Ayan S. Fleischmann
    • 1
  • Fernando M. Fan
    • 1
  • Rodrigo C. D. Paiva
    • 1
  • Gustavo B. Athayde
    • 2
  1. 1.Instituto de Pesquisas Hidráulicas – IPHPorto AlegreBrazil
  2. 2.Laboratório de Pesquisas Hidrogeológicas – LPHCentro Politécnico – UFPRCuritibaBrazil

Personalised recommendations