Advertisement

Hydrogeology Journal

, Volume 27, Issue 8, pp 2729–2738 | Cite as

Geogenic groundwater solutes: the myth

  • Warren W. WoodEmail author
Paper
  • 103 Downloads

Abstract

What is the source of geogenic (natural or native) solutes in groundwater? The orthodox explanation suggests it is largely a function of water–rock interaction (weathering of the soil zone and aquifer mineral framework). It is proposed herein that atmospheric deposition (combination of wet and dry aerosols from ocean spray, smoke, volcanoes, continental dust, and lightning) is a significant source, and in many cases the dominant source, of the major and minor geogenic solutes in groundwater. Solute mass-balance analyses suggest that much of the mass of major and minor ions must be transported into the aquifer from an external source. Example case studies are presented: analysis of groundwater in a coastal marine aquifer located in an arid area (United Arab Emirates) suggests that over 50% of several major ions potentially originate from atmospheric deposition; in an alluvial fan in a semi-arid system (High Plains, USA), 100% of most solutes potentially originate from atmospheric deposition; and in a humid glacial aquifer system (Michigan, USA), 20–30% of many major ions are potentially from atmospheric deposition. These observations contrast with many hydrogeologic textbooks, which still propose the origin to be water–rock interaction—hence, the myth.

Keywords

Groundwater solutes Atmospheric deposition Hydrochemistry 

Solutés géogéniques dans les eaux souterraines: le mythe

Résumé

Quelle est. la source géogénique (naturelle ou native) des solutés dans les eaux souterraines? L’explication habituelle propose qu’une large part de solutés provienne des interactions eau–roche (altération de la zone du sol et cortège minéralogique des roches constitutives de l’aquifère). Nous proposons que les dépôts atmosphériques (combinaison des aérosols humides et secs en provenance des embruns océaniques, fumée, volcans, poussière continentale et foudre) sont des sources significatives et, dans beaucoup de cas la source dominante des solutés géogéniques majeurs et mineurs dans les eaux souterraines. Des analyses de bilan de masse de solutés suggèrent qu’une grande part de cette masse d’ions majeurs et mineurs doit avoir été transportée vers les aquifères depuis une source externe. Des exemples d’études sont présentés: une analyse des eaux souterraines d’un aquifère marin côtier d’une zone aride (Arabie Saoudite) montre que 50% de plusieurs ions majeurs sont probablement d’origine atmosphérique; dans le cône alluvial d’un système semi-aride (Hautes-Plaines, USA), 100% de la plupart des solutés proviendrait de dépôts atmosphériques; et pour un aquifère de zone glaciaire humide (Michigan, USA) 20–30% de plusieurs ions majeurs sont probablement des dépôts atmosphériques. Ces observations contrastent avec beaucoup de manuels d’hydrogéologie qui proposent toujours une origine interaction eau–roche—par conséquent un mythe.

Solutos geogénicos en el agua subterránea: el mito

Resumen

¿Cuál es la fuente de los solutos geogénicos (naturales o nativos) en el agua subterránea? La explicación ortodoxa sugiere que es en gran medida una función de la interacción agua–roca (meteorización del suelo y de la estructura mineral del acuífero). Se propone aquí que la deposición atmosférica (combinación de aerosoles húmedos y secos de aerosoles oceánicos, humo, volcanes, polvo continental y rayos) es una fuente significativa, y en muchos casos la fuente dominante de los solutos geogénicos, mayores y menores en el agua subterránea. Los análisis de balance de masa de los solutos sugieren que gran parte de la masa de iones mayores y menores debe ser transportada al acuífero desde una fuente externa. Se presentan ejemplos de estudios de caso: el análisis de las aguas subterráneas de un acuífero marino costero situado en una zona árida (Emiratos Árabes Unidos) sugiere que más del 50% de varios iones importantes pueden proceder de la deposición atmosférica; en un abanico aluvial de un sistema semiárido (High Plains, EE.UU.), el 100% de la mayoría de los solutos pueden proceder de la deposición atmosférica; y en un sistema acuífero glaciar húmedo (Michigan, EE.UU.), entre el 20 y el 30% de los principales iones son potencialmente de la deposición atmosférica. Estas observaciones contrastan con muchos libros de texto de hidrogeología, que todavía proponen que el origen sea la interacción agua–roca—de ahí el mito.

地质上的地下水溶质:错误的认识

摘要

地下水中的地质(天然或原生的)溶质的来源是什么?普遍接受的解释是溶质很大程度是水-岩相互作用的函数(土壤区和含水层矿物骨架的风化)。本文提出大气沉积(来自海洋喷雾,烟雾,火山,大陆性粉尘和闪电的湿气和干气溶胶的混合)是地下水中主要和次要地质溶质的重要来源,在许多情况下是主要来源。溶质的质量平衡分析表明,大部分主离子和次离子肯定是从外部来源迁移到含水层中。进行了案例研究,对干旱地区(阿拉伯联合酋长国)沿海海洋含水层中地下水进行的分析表明,几种主要离子中有50%以上可能来自大气沉积;半干旱系统(美国高平原)的冲积扇中,大多数溶质的100%可能来自大气沉积;在潮湿的冰川含水层系统中(美国密歇根州),许多主要离子的20–30%可能来自大气沉积。这些观察结果与许多水文地质教科书的意见相反,后者仍然提出起源是水-岩相互作用–因此是错误的。

Solutos geogênicos em águas subterrâneas: o mito

Resumo

Qual é a fonte de solutos geogênicos (naturais ou nativos) nas águas subterrâneas? A explicação ortodoxa sugere que é em grande parte uma função da interação água-rocha (intemperismo da zona do solo e estrutura mineral do aquífero). Propõe-se aqui que a deposição atmosférica (combinação de aerossóis úmidos e secos de pulverizações oceânicas, fumaça, vulcões, poeira continental e raios) é uma fonte significativa e, em muitos casos, a fonte dominante dos solutos geogênicos principais e menores nas águas subterrâneas. Análises de balanço de massa de solutos sugerem que grande parte da massa de íons maiores e menores deve ser transportada para o aquífero a partir de u ma fonte externa. Exemplos de estudos de caso são apresentados: a análise de águas subterrâneas em um aquífero marinho costeiro localizado em uma área árida (Emirados Árabes Unidos) sugere que mais de 50% de vários íons importantes se originam potencialmente da deposição atmosférica; em um leque aluvial em um sistema semiárido (Altas Planícies, EUA), 100% da maioria dos solutos se originam potencialmente da deposição atmosférica; e em um sistema aquífero glacial úmido (Michigan, EUA), 20–30% de muitos íons principais são potencialmente provenientes de deposição atmosférica. Essas observações contrastam com muitos livros de hidrogeologia, que ainda propõem a origem como interação água–rocha—daí o mito.

Notes

Acknowledgements

Thanks go to Leanne Handcock, Ward Sanford and two anonymous individuals for extremely insightful reviews and suggestions, and to Michigan State University, Department of Earth and Environmental Sciences, for providing a welcoming environment and time and space for unfunded research.

References

  1. Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geological Survey Circ 1186, 79 ppGoogle Scholar
  2. Berner EK, Berner RA (1996) Global environmental water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  3. Dieter CA, Maupin MA, Caldwell RR, Harris MA, Ivahnenko TI, Lovelace JK, Barber NL, and Linsey KS (2018) Estimated use of water in the United States in 2015. US Geological Survey Circular 1441, 65 ppGoogle Scholar
  4. Döll P, Fiedler K (2008) Global-scale modeling of groundwater recharge. Hydrol Earth Syst Sci 12:863–885CrossRefGoogle Scholar
  5. Feth JH, Roberson CE, Polzer WL (1964) Sources of mineral constituents in water from granitic rocks, Sierra Nevada, California and Nevada. US Geol Surv Water Suppl Pap 1535–1, 70 ppGoogle Scholar
  6. Galloway JN, Thornton JD, Norton SA, Volchok HL, McLean RA (1982) Trace metals in atmospheric deposition: a review and assessment. Atmos Environ 16(7):1677–1700CrossRefGoogle Scholar
  7. Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52:41–52CrossRefGoogle Scholar
  8. Holtschlag DJ (1997) A generalized estimate of ground-water-recharge rates in the Lower Peninsula of Michigan. US Geol Surv Water Suppl Pap 2437, 33 ppGoogle Scholar
  9. Junge CE, Werby RT (1958) The concentration of chloride, sodium, potassium, calcium, and sulfate in rain water over the United States. J. of Meteorology 15,(5):417–225CrossRefGoogle Scholar
  10. Larson TE, Hettick I (1956) Mineral composition of rainwater. Tellus 8(2):191–201.  https://doi.org/10.3402/tellusa.v8i2.8965 CrossRefGoogle Scholar
  11. Likens GE, Bormann FH, Johnson NM, Pierce RS (1967) The calcium, magnesium, potassium, and sodium budgets for a small forested ecosystem. Ecology 48:772–785CrossRefGoogle Scholar
  12. National Atmospheric Deposition Program (2019a) National Trend Network, Mercury Deposition Network, Atmospheric Integrated Research Monitoring Network, Atmospheric Mercury Network (wet and dry), and Ammonia Monitoring Network. https://nadp.slh.wisc.edu. Accessed October 2019
  13. National Atmospheric Deposition Program (2019b) Total deposition maps. http://nadp.slh.wisc.edu/committees/tdep/tdepmaps/. Accessed October 2019
  14. Nativ R, Riggio R (1990) Meteorologic and isotopic characteristics of precipitation events with implications from ground-water recharge, Southern High Plains. In: Gustavson TC (ed) Geologic framework and regional hydrology: Upper Cenozoic Blackwater Draw and Ogallala formations, Great Plains. Texas Bureau of Economic Geology, Austin, TX, pp 152–179Google Scholar
  15. Pearl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42(5):1154–1165CrossRefGoogle Scholar
  16. Pearson FJ Jr, Fisher DW (1971) Chemical composition of atmospheric precipitation in the northeastern United States. US Geol Surv Water Suppl Pap 1535-P, 23 ppGoogle Scholar
  17. Robertson WD, Cherry JA, Schiff SL (1998) Atmospheric sulfur deposition 1950–1985 inferred from sulfate in groundwater. Water Resour Res 25(6):1111–1123CrossRefGoogle Scholar
  18. Reitz M, Sanford WE, Senay GB, Cazenas J (2019) Annual estimates of recharge, quick-flow runoff, and evapotranspiration for the contiguous U.S. using empirical regression equations. J Am Water Resour Assoc 53(4):961–998CrossRefGoogle Scholar
  19. Sanford WE, Wood WW (2001) Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrogeol J 9(4):358–366CrossRefGoogle Scholar
  20. Stadler S, Osenbruck K, Knoller K, Suckow A, Sultefess J, Oster H, Himmelsbach T, Hotzl H (2008) Understanding the origin and fate of nitrate in groundwater of semi-arid environments. J Arid Environ 72(10):1830–1842CrossRefGoogle Scholar
  21. Vanlier KE, Wood WW, Brunett J (1973) Water supply, development and management alternatives for Clinton, Eaton, and Ingham counties, vol 1969. US Geol Surv Water Suppl Pap 1969, 111 ppGoogle Scholar
  22. Wilson TP, Long DT (1993) Geochemistry and isotope chemistry of Michigan Basin brines: Devonian formations. Appl Geochem 8(1):81–100.  https://doi.org/10.1016/0883-2927(93)90058-O CrossRefGoogle Scholar
  23. Wood WW (1976) A hypothesis of ion filtration in a potable-water aquifer system. Ground Water 14(4):233–244CrossRefGoogle Scholar
  24. Wood WW, Bohlke JK (2017) Density-driven free-convection model for isotopically fractionated geogenic nitrate in sabkha brine. Groundwater 55(2):199–207.  https://doi.org/10.1111/gwat.12463 CrossRefGoogle Scholar
  25. Wood WW, Sanford WE (1995a) Eolian transport, saline lake basins, and groundwater solutes. Water Resour Res 31(12):3121–3129CrossRefGoogle Scholar
  26. Wood WW, Sanford WE (1995b) Chemical and isotopic methods for quantifying ground-water recharge in a regional, semi-arid environment. Ground Water 33(3):458–468CrossRefGoogle Scholar
  27. Wood WW, Sanford WE, Al Habschi ARS (2002) The source of solutes in the coastal sabkha of Abu Dhabi. Bull Geol Soc Am 114(3):259–268CrossRefGoogle Scholar
  28. Wood WW, Clark DW, Imes JL, Councell TB (2010) Eolian transport of geogenic hexavalent chromium to ground water. Ground Water 48(1):19–29.  https://doi.org/10.1111/j.1745-6584.2009.00592.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations