Advertisement

The impact of atmospheric teleconnections on the coastal aquifers of Ria Formosa (Algarve, Portugal)

  • Maria C. NevesEmail author
  • Luis Costa
  • Rui Hugman
  • José P. Monteiro
Paper
  • 5 Downloads

Abstract

Fluctuations in groundwater level in the Ria Formosa coastal aquifers, southern Portugal, owe 80% of the variability to climate-induced oscillations. Wavelet coherences computed between hydraulic heads and the North Atlantic Oscillation (NAO) and East Atlantic (EA) atmospheric teleconnections show nonstationary and spatially varying relationships. The NAO is the most important teleconnection and the main driver of long-term variability, inducing cycle periods of 6–10 years. The NAO fingerprint is ubiquitous and it accounts for nearly 50% of the total variance of groundwater levels. The influence of EA emerges coupled to NAO and is mainly associated with oscillations in the 2–4-year band. These cycles contribute to less than 5% of the variance in groundwater levels and are more evident further from the coast, in the northern part of the system near the main recharge area. Inversely, the power of the annual cycle increases towards the shoreline. The weight of the annual cycle (related to direct recharge) is greatest in the Campina de Faro aquifer, where it is responsible for 20–50% of the variance of piezometric levels. There, signals linked to atmospheric teleconnections (related to regional recharge) are low-pass filtered and have periods >8 years. This behavior (lack of power in the 2–8-year band) emphasizes the vulnerability of coastal groundwater levels to multi-year droughts, particularly in the already stressed Quinta do Lago region, where hydraulic heads are persistently below sea level.

Keywords

Groundwater level Portugal Coastal aquifers Over-abstraction Climate 

L’impact des téléconnexions atmosphériques sur les aquifères côtiers de Ria Formosa (Algarve, Portugal)

Résumé

Les fluctuations des niveaux d’eaux Souterraines dans les aquifères côtiers de Ria Formosa, sud du Portugal, résultent pour 80% de la variabilité des oscillations induites par le climat. Les cohérences des ondelettes calculées entre les charges hydrauliques et les téléconnexions atmosphériques de l’oscillation nord atlantique (NAO) et est atlantique (EA) montrent une non stationnarité et des relations qui changent avec l’espace. NAO est la téléconnexion la plus importante et le principal moteur de la variabilité à long terme, donnant lieu à une cyclicité de 6 à 10 ans. L’empreinte de la NAO est omniprésente et représente près de 50% de la variance totale des niveaux d’eaux souterraines. L’influence de l’EA émerge comme étant couplée à la NAO et est principalement associée à des oscillations dans la bande de 2 à 4 ans. Ces cycles contribuent à moins de 5% de la variance des niveaux d’eaux souterraines et sont plus évidents plus loin de la côte, dans la partie nord du réseau près de la zone de recharge principale. Inversement, la puissance du cycle annuel augmente vers le rivage. Le poids du cycle annuel (lié à la recharge directe) est le plus élevé dans l’aquifère de Campina de Faro, où il est responsable de 20 à 50% de la variance des niveaux piézométriques. Là, les signaux liés aux téléconnexions atmosphériques (liées à la recharge régionale) sont filtrés par une faible bande passante et ont des périodes supérieures à 8 ans. Ce comportement (manque de puissance dans la bande de 2 à 8 ans) souligne la vulnérabilité des niveaux d’eaux souterraines sur le littoral aux sécheresses pluriannuelles, en particulier dans la région déjà en stress hydrique de Quinta do Lago, où les charges hydrauliques sont situées en dessous du niveau de la mer.

El impacto de las teleconexiones atmosféricas en los acuíferos costeros de la Ría Formosa (Algarve, Portugal)

Resumen

Las fluctuaciones en el nivel del agua subterránea en los acuíferos costeros de la Ría Formosa, en el sur de Portugal, se deben en un 80% por la variabilidad a las oscilaciones inducidas por el clima. Las coherencias de ondas calculadas entre las cargas hidráulicas y las teleconexiones atmosféricas de la Oscilación del Atlántico Norte (NAO) y del Atlántico Este (EA) muestran relaciones no estacionarias y espacialmente variables. NAO es la teleconexión más importante y el principal impulsor de la variabilidad a largo plazo, induciendo períodos de ciclo de 6–10 años. La huella de la NAO es ubicua y representa casi el 50% de la varianza total de los niveles de agua subterránea. La influencia de EA emerge acoplada a NAO y se asocia principalmente con oscilaciones en la banda de 2–4 años. Estos ciclos contribuyen a menos del 5% de la varianza en los niveles de agua subterránea y son más evidentes más allá de la costa, en la parte norte del sistema cerca del área de recarga principal. A la inversa, la potencia del ciclo anual aumenta hacia la costa. El peso del ciclo anual (relacionado con la recarga directa) es mayor en el acuífero de Campina de Faro, donde es responsable del 20–50% de la varianza de los niveles piezométricos. Allí, las señales vinculadas a las teleconexiones atmosféricas (relacionadas con la recarga regional) son filtros de paso bajo y tienen períodos >8 años. Este comportamiento (falta de energía en la banda de 2–8 años) enfatiza la vulnerabilidad de los niveles de agua subterránea costera a sequías de varios años, particularmente en la ya estresada región de Quinta do Lago, donde las cargas hidráulicas se encuentran persistentemente por debajo del nivel del mar.

大气遥相关型对Ria Formosa(葡萄牙阿尔加维)沿海含水层的影响

摘要

葡萄牙南部的Ria Formosa沿海含水层80%的地下水位波动是由于气候引起的振荡。计算的水头和北大西洋涛动(NAO)之间的小波相关性与东大西洋(EA)大气遥相关型显示出非平稳和空间变化的关系。 NAO是最重要的遥相关型和长期变化的主要驱动因素, 循环周期为6–10年。 NAO影响普遍存在, 占地下水位总变化的近50%。 EA的影响与NAO相关, 并且主要与2–4年频段的振荡有关。这些循环对地下水水位变化的贡献不到5%, 在主要补给区附近的系统北部沿海岸更加明显。相反, 年循环的影响沿海岸线增加。年循环(与直接补给相关)在Campina de Faro含水层中影响最大, 其中它占压力水头变化的20–50%。在那些地方, 与大气遥相关型(与区域补给有关)的信号经过低通滤波, 周期 > 8年。这种行为(2–8年频段幅度不大)指示沿海地下水位对多年干旱的脆弱性, 特别是在已经处于过量开采的Quinta do Lago地区, 那里的水头始终低于海平面。

O impacto das teleconexões atmosféricas nos aquíferos costeiros da Ria Formosa (Algarve, Portugal)

Resumo

Cerca de 80% das flutuações dos níveis piezométricos nos aquíferos costeiros da Ria Formosa (Sul de Portugal) são induzidos por oscilações climáticas. A coerência entre a piezometria e as teleconexões atmosféricas da Oscilação do Atlântico Norte (NAO) e Atlântico Este (EA), calculada pelo método das wavelet, apresenta relações não estacionárias e espacialmente variáveis. A teleconexão NAO é o principal factor de controlo da variabilidade de longo-termo, com indução de períodos na banda de 6 a 10 anos. O efeito do NAO é ubíquo e explica cerca de 50% da variação total dos níveis de água subterrânea. A influência do EA surge acoplada ao NAO e está predominantemente associada a oscilações na banda de 2 a 4 anos. A contribuição deste ciclo para a variância dos níveis de água subterrânea é inferior a 5%, sendo mais evidente a distâncias maiores da costa, nas principais zonas de recarga, situadas na área norte do sistema. Por outro lado, a influência do ciclo anual aumenta em direcção à costa. O peso do ciclo anual (relacionado com a recarga directa) é maior no aquífero Campina de Faro, sendo responsável por 20 a 50% da variação dos níveis piezométricos. Neste aquífero, o sinal das teleconexões atmosféricas (relacionados com a recarga regional) sofreu o efeito de um filtro passa-baixo e apresenta períodos superiores a 8 anos. Este comportamento (ausência de influência na banda 2–8 anos) realça a vulnerabilidade dos níveis piezométricos em zonas costeiras a anos consecutivos de seca, com particular destaque na zona crítica da Quinta do Lago, que apresenta níveis persistentemente abaixo do nível do mar.

Notes

Acknowledgments

We thank the constructive comments and suggestions of two anonymous reviewers that helped to improve the manuscript.

Funding information

This publication is supported by FCT-project UID/GEO/50019/2019 – Instituto Dom Luiz. Luís Costa would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) for the PhD grant SFRH/BD/131568/2017.

References

  1. Almeida C, Mendonça JJL, Jesus MR, Gomes AJ (2000) Sistemas aquíferos de Portugal continental [Aquifer systems in continental Portugal]. Relatório INAG, Instituto da Água, LisbonGoogle Scholar
  2. Andreo B, Jiménez P, Durán JJ, Carrasco F, Vadillo I, Mangin A (2006) Climatic and hydrological variations during the last 117–166 years in the south of the Iberian Peninsula, from spectral and correlation analyses and continuous wavelet analyses. J Hydrol 324:24–39.  https://doi.org/10.1016/j.jhydrol.2005.09.010 CrossRefGoogle Scholar
  3. Asoka A, Gleeson T, Wada Y, Mishra V (2017) Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat Geosci 10:109–117.  https://doi.org/10.1038/ngeo2869 CrossRefGoogle Scholar
  4. Bridgman HA, Oliver JE (2006) The global climate system: patterns, processes, and teleconnections. Cambridge University Press, Cambridge, UK, 331 ppGoogle Scholar
  5. Cardoso RM, Soares PMM, Lima DCA, Miranda PMA (2018) Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim Dyn 0:1–29.  https://doi.org/10.1007/s00382-018-4124-4 CrossRefGoogle Scholar
  6. Corona CR, Gurdak JJ, Dickinson JE, Ferré T, Maurer E (2018) Climate variability and vadose zone controls on damping of transient recharge. J Hydrol 561:1094–1104.  https://doi.org/10.1016/j.jhydrol.2017.08.028 CrossRefGoogle Scholar
  7. Dettinger MD, Ghil M, Strong CM, Weibel W, Yiou P (1995) Software expedites singular-spectrum analysis of noisy time series. EOS Trans AGU 76(2):12–21Google Scholar
  8. Dickinson JE, Hanson RT, Ferré TPA, Leake SA (2004) Inferring time-varying recharge from inverse analysis of long-term water levels. Water Resour Res 40:W07403.  https://doi.org/10.1029/2003WR002650 CrossRefGoogle Scholar
  9. Dong L, Shimada J, Kagabu M, Fu C (2015) Teleconnection and climatic oscillation in aquifer water level in Kumamoto plain. Japan Hydrol Process 29:1687–1703.  https://doi.org/10.1002/hyp.10291 CrossRefGoogle Scholar
  10. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Chang 2:342–345.  https://doi.org/10.1038/nclimate1413 CrossRefGoogle Scholar
  11. Fragoso M, Tildes Gomes P (2008) Classification of daily abundant rainfall patterns and associated large-scale atmospheric circulation types in southern Portugal. Int J Climatol 28:537–544.  https://doi.org/10.1002/joc.1564 CrossRefGoogle Scholar
  12. Fu C, James AL, Wachowiak MP (2012) Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada. Water Resour Res 48:W05567.  https://doi.org/10.1029/2011WR011507 CrossRefGoogle Scholar
  13. García-Herrera R, Hernández E, Barriopedro D, Paredes D, Trigo R, Trigo I, Mendes MA (2007) The outstanding 2004/05 drought in the Iberian Peninsula: associated atmospheric circulation. J Hydrometeorol 8:483–498CrossRefGoogle Scholar
  14. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:1–41.  https://doi.org/10.1029/2001RG000092 CrossRefGoogle Scholar
  15. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615.  https://doi.org/10.1002/joc.810 CrossRefGoogle Scholar
  16. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566.  https://doi.org/10.5194/npg-11-561-2004 CrossRefGoogle Scholar
  17. Gurdak JJ (2017) Groundwater: climate-induced pumping. Nat Geosci 10:71–72CrossRefGoogle Scholar
  18. Gurdak JJ, Hanson RT, McMahon PB, Bruce B, McCray J, Thyne G, Reedy R (2007) Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA. Vadose Zone J 6:533CrossRefGoogle Scholar
  19. Hanson RT, Newhouse MW, Dettinger MD (2004) A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States. J Hydrol 287:252–269.  https://doi.org/10.1016/j.jhydrol.2003.10.006 CrossRefGoogle Scholar
  20. Holman IP, Rivas-Casado M, Bloomfield JP, Gurdak JJ (2011) Identifying non-stationary groundwater level response to North Atlantic Ocean-atmosphere teleconnection patterns using wavelet coherence. Hydrogeol J 19:1269–1278.  https://doi.org/10.1007/s10040-011-0755-9 CrossRefGoogle Scholar
  21. Hugman R (2016) Numerical approaches to simulate groundwater flow and transport in coastal aquifers: from regional scale management to submarine groundwater discharge. PhD Thesis, Universidade do Algarve, Algarve, SpainGoogle Scholar
  22. Hugman R, Stigter T, Costa L, Monteiro JP (2017) Modeling nitrate-contaminated groundwater discharge to the Ria Formosa coastal lagoon (Algarve, Portugal). Procedia Earth Planet Sci 17:650–653.  https://doi.org/10.1016/j.proeps.2016.12.174 CrossRefGoogle Scholar
  23. Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Chang 36:301–326CrossRefGoogle Scholar
  24. IPMA (2019) Instituto Português do Mar a e da Atmosfera [Portuguese Institute of Sea Atmosphere] website. http://www.ipma.pt. Accessed 1 Feb 2019
  25. Kalimeris A, Ranieri E, Founda D, Norrant C (2017) Variability modes of precipitation along a Central Mediterranean area and their relations with ENSO, NAO, and other climatic patterns. Atmos Res 198:56–80.  https://doi.org/10.1016/j.atmosres.2017.07.031 CrossRefGoogle Scholar
  26. Kuss AJM, Gurdak JJ (2014) Groundwater level response in U.S. principal aquifers to ENSO, NAO, PDO, and AMO. J Hydrol 519:1939–1952.  https://doi.org/10.1016/j.jhydrol.2014.09.069 CrossRefGoogle Scholar
  27. Lorenzo-Lacruz J, Vicente-Serrano SM, López-Moreno JI, González-Hidalgo J, Morán-Tejeda E (2011) The response of Iberian rivers to the North Atlantic Oscillation. Hydrol Earth Syst Sci 15:2581–2597.  https://doi.org/10.5194/hess-15-2581-2011 CrossRefGoogle Scholar
  28. Luque-Espinar JA, Chica-Olmo M, Pardo-Igúzquiza E, García-Soldado MJ (2008) Influence of climatological cycles on hydraulic heads across a Spanish aquifer. J Hydrol 354:33–52.  https://doi.org/10.1016/j.jhydrol.2008.02.014 CrossRefGoogle Scholar
  29. Manuppella (1992) Carta geológica da Região do Algarve à escala 1/100 000 [Geologic map of Portugal at the scale 1/100 000]. http://geoportal.lneg.pt/geoportal/mapas/ajuda/CartaAlgarve_100k.html. Accessed October 2019
  30. Miranda P, Coelho FES, Tomé AR, Valente MA (2002) 20th century Portuguese climate and climate scenarios. In: Climate change in Portugal: scenarios, impacts and adaptation measures. SIAMproject, pp 23–83. http://siamproject.free.fr/. Accessed October 2019
  31. Moore GWK, Renfrew IA, Pickart RS (2013) Multidecadal mobility of the North Atlantic Oscillation. J Clim 26:2453–2466.  https://doi.org/10.1175/JCLI-D-12-00023.1 CrossRefGoogle Scholar
  32. Neves MC, Costa L, Monteiro JP (2016) Climatic and geologic controls on the piezometry of the Querença-Silves karst aquifer, Algarve (Portugal). Hydrogeol J 24:1015–1028.  https://doi.org/10.1007/s10040-015-1359-6 CrossRefGoogle Scholar
  33. Neves MC, Jerez S, Trigo RM (2019) The response of piezometric levels in Portugal to NAO, EA, and SCAND climate patterns. J Hydrol 568:1105–1117.  https://doi.org/10.1016/j.jhydrol.2018.11.054 CrossRefGoogle Scholar
  34. Nicolau R (2002) Modelação e mapeamento da distribuição espacial da precipitação: uma aplicação a Portugal Continental [Modeling and mapping of the spatial distribution of rainfall: an application to continental Portugal]. PhD Thesis, Universidade Nova de Lisboa, Lisbon, PortugalGoogle Scholar
  35. NOAA (2019) National Oceanic and Atmospheric Administration, Climate Prediction Center website. http://www.cpc.ncep.noaa.gov. Accessed 1 Feb 2019
  36. Russo TA, Lall U (2017) Depletion and response of deep groundwater to climate-induced pumping variability. Nat Geosci 10:105–108.  https://doi.org/10.1038/ngeo2883 CrossRefGoogle Scholar
  37. SNIRH (2019) Sistema Nacional de Informação de Recursos Hídricos [National Information System for Water Resources] website. http://www.snirh.pt. Accessed 1 February 2019
  38. Soares PMM, Cardoso RM, Lima DCA, Miranda PMA (2017) Future precipitation in Portugal: high-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim Dyn 49:2503–2530.  https://doi.org/10.1007/s00382-016-3455-2 CrossRefGoogle Scholar
  39. Steirou E, Gerlitz L, Apel H, Merz B (2017) Links between large-scale circulation patterns and streamflow in Central Europe: a review. J Hydrol 549:484–500.  https://doi.org/10.1016/j.jhydrol.2017.04.003 CrossRefGoogle Scholar
  40. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Evaluation of an intrinsic and a specific vulnerability assessment method in comparison with groundwater salinisation and nitrate contamination levels in two agricultural regions in the south of Portugal. Hydrogeol J 14:79–99.  https://doi.org/10.1007/s10040-004-0396-3 CrossRefGoogle Scholar
  41. Stigter TY, Van Ooijen SPJ, Post VEA, Appelo C, Carvalho Dill A (1998) A hydrogeological and hydrochemical explanation of the groundwater composition under irrigated land in a Mediterranean environment, Algarve, Portugal. J Hydrol 208:262–279.  https://doi.org/10.1016/S0022-1694(98)00168-1 CrossRefGoogle Scholar
  42. Taylor RG, Todd MC, Kongola L, Maurice L, Nahozya E, Sanga H, Macdonald A (2013) Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat Clim Chang 3:374–378.  https://doi.org/10.1038/nclimate1731 CrossRefGoogle Scholar
  43. Team US/Japan (2009) ASTER global digital elevation model version 2. NASA EOSDIS Land Processes DAAC, USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD. https://lpdaacusgsgov. Accessed 1 February 2019
  44. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  45. Torrence C, Webster PJ (1998) The annual cycle of persistence in the El Nino/Southern Oscillation. Q J R Meteorol Soc 124:1985–2004.  https://doi.org/10.1002/qj.49712455010 CrossRefGoogle Scholar
  46. Tremblay L, Larocque M, Anctil F, Rivard C (2011) Teleconnections and interannual variability in Canadian groundwater levels. J Hydrol 410:178–188.  https://doi.org/10.1016/j.jhydrol.2011.09.013 CrossRefGoogle Scholar
  47. Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra M (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24:925–944.  https://doi.org/10.1002/joc.1048 CrossRefGoogle Scholar
  48. Trigo RM, Valente MA, Trigo IF, Miranda P, Ramos A, Paredes D, García-Herrera R (2008) The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Trends Dir Clim Res Ann NY Acad Sci 1146:212–234.  https://doi.org/10.1196/annals.1446.014 CrossRefGoogle Scholar
  49. Vallejos A, Sola F, Pulido-Bosch A (2014) Processes influencing groundwater level and the freshwater–saltwater interface in a coastal aquifer. Water Resour Manag 29:679–697.  https://doi.org/10.1007/s11269-014-0621-3 CrossRefGoogle Scholar
  50. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys D Nonlinear Phenom 58:95–126CrossRefGoogle Scholar
  51. Velasco EM, Gurdak JJ, Dickinson JE, Ferré T, Corona C (2017) Interannual to multidecadal climate forcings on groundwater resources of the U.S. west coast. J Hydrol Reg Stud 11:250–265.  https://doi.org/10.1016/j.ejrh.2015.11.018 CrossRefGoogle Scholar
  52. Vicente-Serrano SM, López-Moreno JI (2008) Nonstationary influence of the North Atlantic Oscillation on European precipitation. J Geophys Res Atmos 113:D20120.  https://doi.org/10.1029/2008JD010382 CrossRefGoogle Scholar
  53. Zhang J, Hao Y, Hu B, Huo X, Hao P, Liu Z (2017) The effects of monsoons and climate teleconnections on the Niangziguan karst spring discharge in North China. Clim Dyn 48:53–70.  https://doi.org/10.1007/s00382-016-3062-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maria C. Neves
    • 1
    • 2
    Email author
  • Luis Costa
    • 1
    • 3
  • Rui Hugman
    • 4
  • José P. Monteiro
    • 1
    • 3
  1. 1.Universidade do Algarve, FCTFaroPortugal
  2. 2.Instituto Dom Luiz (IDL)Universidade de LisboaLisbonPortugal
  3. 3.Centro de Ciências e Tecnologia da ÁguaUniversidade do AlgarveFaroPortugal
  4. 4.Umvoto Africa (Pty) LtdCape TownSouth Africa

Personalised recommendations