Advertisement

The contribution of citizen science in managing and monitoring groundwater systems impacted by coal seam gas production: an example from the Surat Basin in Australia’s Great Artesian Basin

  • Michael JamiesonEmail author
  • Mabbie Elson
  • Ross Carruthers
  • Carlos Miraldo Ordens
Paper
  • 80 Downloads

Abstract

Monitoring is critical for effective groundwater management, especially in systems with competing groundwater interests, such as the Great Artesian Basin’s (GAB) Surat Basin (~180,000 km2) in Queensland, Australia. Coal seam gas (CSG) activities in the region have led to public concerns about potential impacts on groundwater and to landholder complaints about impacts on boreholes. To deal with these issues, the Queensland Government established the Groundwater Net and Groundwater Online citizen-science monitoring programs, which started in 2013 and were fully operational by 2018. Groundwater Net is a community-based education and groundwater monitoring program in which over 500 landholders across 16 local groups have attended workshops and provided over 1,000 groundwater-level/pressure readings from their boreholes using the My Groundwater Monitoring website. Annual workshops provide a forum to share and discuss monitoring results and knowledge. Regularly updated status reports compare monitoring data from CSG companies and the government with landholder data. Groundwater Online is a complimentary program using continuous-monitoring loggers and telemetry on 46 private boreholes. Citizen science now provides 13% of GAB monitoring boreholes in the CSG area. By effectively engaging with borehole owners, and empowering them to monitor, many opportunities arise for better groundwater management. Consequently, the spatial reach of groundwater monitoring and its frequency have increased, landholders are educated about groundwater systems, and borehole owners generally feel more confident about monitoring conducted by CSG companies and government.

Keywords

Coal seam gas Citizen science Groundwater monitoring Socio-economic aspects Australia 

La contribution de la science citoyenne à la gestion et à la surveillance des systèmes d’eaux souterraines affectées par la production de gaz de couche: un exemple tiré du bassin de la Surat dans le Grand Bassin Artésien en Australie

Résumé

La surveillance est essentielle pour une gestion efficace des eaux souterraines, en particulier dans les systèmes ayant des intérêts concurrents en eaux souterraines, tels que le bassin de Surat du Grand Bassin Artesian (GBA) (~180,000 km2) dans le Queensland, en Australie. Les activités de gaz de couche dans la région ont suscité l’inquiétude du public quant aux impacts potentiels sur les eaux souterraines et aux plaintes des propriétaires terriens concernant les impacts sur les trous de forage. Pour faire face à ces problèmes, le gouvernement du Queensland a mis en place les programmes de surveillance citoyenne “Groundwater Net” et “Groundwater Online”, qui ont démarré en 2013 et qui sont pleinement opérationnels en 2018. Groundwater Net est un programme de surveillance communautaire et de surveillance des eaux souterraines dans lequel plus de 500 propriétaires terriens 16 groupes locaux ont assisté à des ateliers et fourni plus de 1,000 relevés de niveau / de pression des eaux souterraines à partir de leurs trous de forage en utilisant le site web “My Groundwater Monitoring”. Les ateliers annuels offrent un forum pour partager et discuter des résultats et des connaissances en matière de surveillance. Des rapports de situation régulièrement mis à jour comparent les données de surveillance des entreprises du gaz de couche et du gouvernement avec les données des propriétaires terriens. Groundwater Online est un programme gratuit utilisant des enregistreurs à surveillance continue et la télémétrie dans 46 forages privés. La science citoyenne fournit maintenant 13% des forages de surveillance GBA dans la zone gaz de couche. En coopérant efficacement avec les propriétaires de puits de forage et en leur donnant les moyens de surveiller, de nombreuses opportunités se présentent pour une meilleure gestion des eaux souterraines. En conséquence, la portée spatiale de la surveillance des eaux souterraines et sa fréquence ont augmenté, les propriétaires terriens sont informés sur les systèmes d’eaux souterraines et les propriétaires de puits de forage se sentent généralement plus confiants à l’égard des activités de surveillance menées par les sociétés gaz de couche et le gouvernement.

La contribución de la ciencia ciudadana en el manejo y monitoreo de los sistemas de aguas subterráneas impactados por la producción de gas de veta de carbón: un ejemplo de la Cuenca Surat en la Gran Cuenca Artesiana de Australia

Resumen

El monitoreo es crítico para la gestión efectiva del agua subterránea, especialmente en sistemas con intereses competitivos de agua subterránea, como la Cuenca Surat de la Gran Cuenca Artesiana (GCA) (~180,000 km2) en Queensland, Australia. Las actividades del gas de veta de carbón (GVC) en la región han generado inquietudes públicas sobre los posibles impactos en las aguas subterráneas y quejas de los propietarios sobre los impactos en los pozos. Para hacer frente a estos problemas, el Gobierno de Queensland estableció los programas de monitoreo de ciencia ciudadana Groundwater Net y Groundwater Online, que comenzaron en 2013 y estaban en pleno funcionamiento en 2018. Groundwater Net es un programa de educación y monitoreo de aguas subterráneas basado en la comunidad en el que más de 500 propietarios de tierras en 16 grupos locales asistieron a talleres y proporcionaron más de 1,000 lecturas de nivel / presión de agua subterránea de sus pozos utilizando el sitio web My Groundwater Monitoring. Los talleres anuales proporcionan un foro para compartir conocimiento y discutir los resultados del monitoreo. Los informes de estado actualizados regularmente comparan los datos de monitoreo de las empresas GVC y del gobierno con los datos de los propietarios. Groundwater Online es un programa complementario que utiliza r monitoreo continuo y telemetría en 46 pozos privados. La ciencia ciudadana ahora proporciona el 13% de los pozos de monitoreo de la GCA en el área GVC. Al comprometerse de manera efectiva con los propietarios de los pozos y capacitarlos para monitorear, surgen muchas oportunidades para una mejor gestión del agua subterránea. En consecuencia, el alcance espacial del monitoreo de las aguas subterráneas y su frecuencia han aumentado, los propietarios de tierras están informados sobre los sistemas de aguas subterráneas y los propietarios de pozos generalmente se sienten más seguros sobre el monitoreo realizado por las empresas GVC y el gobierno.

公民科学在煤层气生产影响的地下水系统管理和监测方面的贡献:澳大利亚苏拉特盆地大自流盆地的例子

摘要

地下水监测对于有效的地下水管理特别是在具有地下水竞争的系统中至关重要,例如澳大利亚昆士兰州的大自流盆地(GAB)苏拉特盆地(约180,000平方公里)。该地区的煤层气(CSG)活动引起了公众对地下水潜在影响的关注,并使土地所有者开始抱怨钻孔的影响。为了解决这些问题,昆士兰州政府建立了地下水网及地下水在线公民科学监测项目。该项目始于2013年,并于2018年全面投入运营。地下水网是一项以社区教育和地下水监测为主旨的项目,其中有500多个土地所有者和16个当地团体参加了研讨会,并通过“我的地下水监测”网站提供了来自其钻孔的1000多个地下水位/压力读数。年度研讨会提供了一个分享和讨论监测结果和知识的平台。定期更新的检测报告对比了从CSG公司获取的数据和包括土地所有者数据在内的政府监测数据。地下水在线是一项免费项目,使用连续监测记录仪和46个私人钻孔遥感监测。公民科学目前提供了CSG区域13%的GAB监测钻孔。通过有效地与钻孔所有者沟通并赋权他们进行地下水监测,获得很多改善地下水管理的机会。因此,地下水监测空间范围及其频率的增加和为土地所有者提供地下水系统的科普,使得监测井的所有者对CSG公司和政府进行的地下水监测更有信心。

Contribuição da ciência cidadã Para a gestão e monitorização de sistemas de água subterrânea afectados pela produção de metano de leito de carvão: um exemplo da Bacia Surat na Grande Bacia Artesiana da Austrália

Resumo

A monitorização é fundamental para a gestão eficaz da água subterrânea, especialmente em sistemas com competição por este recurso, como a Bacia Surat da Grande Bacia Artesiana (GBA) (~180.000 km2) em Queensland, Austrália. A exploração de metano de leito de carvão na região levou a preocupações públicas sobre os possíveis impactos na água subterrânea e a reclamações dos proprietários locais sobre os impactos nos seus furos. Para lidar com estas questões, o governo de Queensland estabeleceu os programas de monitorização de ciência cidadã “Groundwater Net” e “Groundwater Online”, que começaram em 2013 e entraram em pleno funcionamento em 2018. Groundwater Net é um programa comunitário de esclarecimento público e monitorização de água subterrânea, no qual mais de 500 proprietários, organizados em 16 grupos locais, participaram em oficinas de trabalho e forneceram mais de 1,000 leituras de níveis/ pressões de água subterrânea dos seus furos, através do portal “My Groundwater Monitoring”. As oficinas de trabalho anuais oferecem um fórum para compartilhar conhecimento e discutir resultados da monitorização. Relatórios actualizados regularmente comparam os dados de monitorização das empresas exploradoras de metano de leito de carvão e do governo com os dados dos proprietários. Groundwater Online é um programa complementar que utiliza sondas de monitorização contínua e telemetria em 46 furos particulares. Actualmente, a ciência cidadã contribui com 13% dos furos de monitorização dos aquíferos da GBA na área de exploração de metano de leito de carvão. O envolvimento eficaz com os proprietários de furos capacita-os para monitorizar, e consequentemente muitas oportunidades surgem para uma melhor gestão da água subterrânea. Com efeito, a distribuição espacial e frequência da monitorização de água subterrânea aumentaram, os proprietários locais têm mais conhecimento sobre o sistema aquífero e geralmente mais confiança na monitorização realizada pelas empresas exploradoras de metano de leito de carvão e pelo governo.

Notes

Acknowledgements

We would like to thank all community members who volunteered to participate in the program and those who attended the workshops. We also thank those who provided quotes for the paper, and those who permitted us to use their photos. We especially thank Tony Andresen and Ken Craw for assisting with data analyses for this paper. We thank Dr. Katherine Witt, Adrian McKay and an anonymous reviewer for their valuable feedback, which improved the quality of this manuscript.

Funding information

DNRME funded the reported program.

References

  1. Ag Force (2018) CSG and mining webinar: 2017 landholder sentiment survey results. https://agforceprojectsorgau/indexphp?tgtPage=&page_id=202. Accessed 18 December 2018
  2. Australia Pacific LNG (2017) Environmental and social report: January to June 2017. https://wwwaplngcomau/content/dam/aplng/reports/2017/APLNG%20Enviro%20%20Social%20Report%20Edition%2011%20September%202017%20Rev%200pdf. Accessed 18 March 2019
  3. Barthell R, Foster F, Villholth KG (2017) Interdisciplinary and participatory approaches: the key to effective groundwater management. Hydrogeol J 25:1923–1926CrossRefGoogle Scholar
  4. Bhattacharjee Y (2005) Citizen scientists supplement work of Cornell researchers. Science 308:1402–1403CrossRefGoogle Scholar
  5. Bonney R, Cooper CB, Dickinson J, Kelling S, Phillips T, Rosenberg KV, Shirk J (2009) Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience 59(11):977-984Google Scholar
  6. Brouwer R, Ordens CM, Pinto R, Condesso de Melo MT (2018) Economic valuation of groundwater protection using a groundwater quality ladder based on chemical threshold levels. Ecol Indic 88:292–304CrossRefGoogle Scholar
  7. Business Queensland (2018) Groundwater monitoring for resource impacts. https://wwwbusinessqldgovau/industries/mining-energy-water/resources/landholders/csg/groundwater-monitoring. Accessed 18 December 2018
  8. Business Queensland (2019) Legislation and policies for petroleum and energy resources. https://wwwbusinessqldgovau/industries/mining-energy-water/resources/petroleum-energy/legislation-policies/. Accessed 8 January 2019
  9. Buytaert W, Zulkafli Z, Grainger S, Acosta L, Alemie TC, Bastiaensen J, Bièvre BD, Bhusal J, Clark J, Dewulf A, Foggin M, Hannah DM, Hergarten C, Isaeva A, Karpouzoglou T, Pandeya B, Paudel D, Sharma K, Steenhuis T, Tilahun S, Hecken GV, Zhumanova M (2014) Citizen science in hydrology and water resources: opportunities for knowledge generation, ecosystem service management, and sustainable development. Front Earth Sci 2(26):1–21.  https://doi.org/10.3389/feart.2014.00026 CrossRefGoogle Scholar
  10. Cabral Pinto MMS, Ordens CM, Condesso de Melo MT, Inácio M, Almeida A, Pinto E, Ferreira da Silva EA (2019) An inter-disciplinary approach to evaluate human health risks due to long-term exposure to contaminated groundwater near a chemical complex. Exposure Health.  https://doi.org/10.1007/s12403-019-00305-z
  11. Carruthers R, Latcham B, Pudney S (2006) Volumetric conversion in SE South Australia: changing perceptions, mindsets and knowledge barriers before changing water licences. The Regional Institute. http://wwwregionalorgau/au/apen/2006/refereed/3/3052_carruthersrhtm. Accessed 18 December 2018
  12. Clark I, Brake L (2009) Using local knowledge to improve understanding of groundwater supplies in parts of arid South Australia. GeoJournal 74(5):441–450CrossRefGoogle Scholar
  13. Commonwealth of Australia (2018) Adequacy of the regulatory framework governing water use by the extractive industry. The Senate Environment and Communications References Committee October 2018, Commonwealth of Australia, Canberra, AustraliaGoogle Scholar
  14. Cuadrado-Quesada G (2014) Groundwater governance and spatial planning challenges: examining sustainability and participation on the ground. Water Int 39(6):798–812CrossRefGoogle Scholar
  15. Curtis A, Mitchell A, Sharp E (2016) Social science contributions to groundwater governance. In: Jakeman A,J., Barreteau O, Randall JJ, Rinaudo JD, Ross A (eds) Integrated groundwater management. Springer, Heidelberg, GermanyGoogle Scholar
  16. DNRM (Department of Natural Resources and Mines) (2013) Coal seam gas engagement and compliance plan 2013. https://agforceprojectsorgau/filephp?id=217&open=yes. Accessed 18 December 2018
  17. DNRM (Department of Natural Resources and Mines) (2016) Hydrogeological Assessment of the Great Artesian Basin. Characterisation of aquifer groups Surat Basin. Prepared by Klohn Crippen Berger, July 2016. Brisbane, Australia.Google Scholar
  18. DNRM (Department of Natural Resources and Mines) (2017a) Great Artesian Basin and other regional aquifers water plan. Minister’s Considerations report, September 2017, DNRM, Brisbane, AustraliaGoogle Scholar
  19. DNRM (Department of Natural Resources and Mines) (2017b) Great Artesian Basin and other regional aquifers water management protocol, September 2017. DNRM, Brisbane, AustraliaGoogle Scholar
  20. DNRME (Department of Natural Resources Mines and Energy) (2018) Water monitoring information portal. https://water-monitoringinformationqldgovau. Accessed 20 December 2018
  21. DNRME (Department of Natural Resources Mines and Energy) (2019) Groundwater net digital report 2018. http://qldspatialinformationqldgovau/GroundwaterNetReport/indexhtml. Accessed 1 July 2019
  22. DNRW (Department of Natural Resources and Water) (2007) Great Artesian Basin resource operations plan February 2007. DNRW, Brisbane, AustraliaGoogle Scholar
  23. Eastoe CJ, Clark B (2018) Understanding the water resources of a small rural community: citizen science in Cascabel, Arizona. J Contemp Water Res Educ Issue 164:19–40CrossRefGoogle Scholar
  24. Esteban E, Albiac J (2012) The problem of sustainable groundwater management: the case of La Mancha aquifers, Spain. Hydrogeol J 20:851–863CrossRefGoogle Scholar
  25. GasFields Commission (2018) Queensland’s petroleum and gas industry snapshot. https://uploadsprod01oregonplatform-oscom/instances/1067/assets/content/pdf/Industry%20snapshot%20FINAL_web%20versionpdf?updated=1563921207. Accessed 10 September 2019
  26. Gillespie N, Bond C, Downs V, Staggs J (2016) Stakeholder trust in the Queensland CSG industry. APPEA J 56(1):239–246CrossRefGoogle Scholar
  27. Habermehl MA (2019) Review: The evolving understanding of the great Artesian Basin (Australia), from discovery to current hydrogeological interpretations. Hydrogeol J.  https://doi.org/10.1007/s10040-019-02036-6
  28. Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A, Muhammad A, Hamilton S (2016) Integrated groundwater management: an overview of concepts and challenges. In: Jakeman AJ, Barreteau 0, Randall JH, Rinaudo JD, Ross A (eds) Integrated groundwater management. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  29. Keir G, Bulovic N, McIntyre N (2019) Stochastic Modeling of Groundwater Extractions over a Data-Sparse Region of Australia. Groundwater 57(1):97-109CrossRefGoogle Scholar
  30. LBCCG (Lake Baroon Catchment Care Group) (2014) SEQ Catchments Community - Based Groundwater Investigation. https://www.lbccg.org.au/wp-content/uploads/2014/02/GIG-A4-poster-print.pdf. Accessed 29 Oct 2019
  31. Little KE, Hayashi M, Liang S (2016) Community-Based Groundwater Monitoring Network Using a Citizen-Science Approach. Groundwater 54(3):317-324CrossRefGoogle Scholar
  32. Lopez-Gunn E (2003) The role of collective action in water governance: a comparative study of groundwater user associations in La Mancha aquifers in Spain. Water Int 28(3):367–378CrossRefGoogle Scholar
  33. Luke H, Lloyd D, Boyd W, den Exter K (2014) Unconventional gas development: why a regional community said no. Geogr Res 52(3):263–279CrossRefGoogle Scholar
  34. Mitchell M, Curtis A, Sharp E, Mendham E (2012) Directions for social research to underpin improved groundwater management. J Hydrol 448–449:223–231CrossRefGoogle Scholar
  35. OGIA (Office of Groundwater Impact Assessment) (2012) Underground water impact report for the Surat cumulative management area, 18 July 2012. https://wwwdnrmqldgovau/__data/assets/pdf_file/0016/31327/underground-water-impact-reportpdf. Accessed 18 December 2018
  36. OGIA (Office of Groundwater Impact Assessment) (2016) Underground water impact report for the Surat cumulative management area, 2016. https://wwwdnrmqldgovau/__data/assets/pdf_file/0007/345616/uwir-surat-basin-2016pdf. Accessed 18 December 2018
  37. OGIA (Office of Groundwater Impact Assessment) (2017) Annual report 2017 for the Surat underground water impact report 2016. https://wwwdnrmqldgovau/__data/assets/pdf_file/0007/1257838/surat-uwir-annual-report-2017pdf. Accessed 15 January 2019
  38. OGIA (Office of Groundwater Impact Assessment) (2018) Annual report 2018 for the Surat underground water impact report 2016. https://wwwdnrme.qld.gov.au/_data/assets/pdf_file/0007/1397644/surat-uwir-annual-report-2018.pdf. Accessed 28 Oct 2019
  39. OGIA (Office of Groundwater Impact Assessment) (2019) Underground water impact report for the Surat cumulative management area. Consultation draft May 2019. https://www.dnrme.qld.gov.au/__data/assets/pdf_file/0010/1445554/uwir-2019-report.pdf. Accessed 17 July 2019
  40. Peckenham JM, Thornton T, Peckenham P (2012) Validation of Student Generated Data for Assessment of Groundwater Quality. Journal of Science Education and Technology 21(2):287-294CrossRefGoogle Scholar
  41. Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24:13224–13234CrossRefGoogle Scholar
  42. Queensland Government (2018a) Open Data Portal. Groundwater database – Queensland. https://dataqldgovau/dataset/groundwater-database-queensland. Accessed 18 December 2018
  43. Queensland Government (2018b) Queensland budget 2018–19: budget strategy and outlook. Budget paper no. 2. https://s3.treasury.qld.gov.au/files/BP2-2018-19.pdf. Accessed 10 September 2019
  44. Queensland Government (2018c) Queensland Globe. https://qldglobeinformationqldgovau/. Accessed 20 December 2018
  45. Queensland Government (2019a) My groundwater monitoring. https://www.dnrm.qld.gov.au/qld/my-groundwater-monitoring#view=login. Accessed October 2019
  46. Queensland Government (2019b) Open Data Portal: petroleum and gas production and reserve statistics historical data. https://dataqldgovau/dataset/petroleum-and-gas-production-and-reserve-statistics-historical-data. Accessed 15 January 2019
  47. Re V (2015) Incorporating the social dimension into hydrogeochemical investigations for rural development: the Bir Al-Nas approach for socio-hydrogeology. Hydrogeol J 23:1293–1304CrossRefGoogle Scholar
  48. Santos GLNG (2017) Groundwater management and monitoring plan. Project stage 1, EPBC (2012/6615), Document no. 0007-650-PLA-0009. https://www.santos.com/media/4242/170926_gfd_groundwater-management-and-monitoring-plan_rev0.pdf
  49. Shalsi S, Ordens CM, Curtis A, Simmons TS (2019) Can collective action address the “tragedy of the commons” in groundwater management? Insights from an Australian case study. Hydrogeol J.  https://doi.org/10.1007/s10040-019-01986-1 CrossRefGoogle Scholar
  50. Silliman SE, Crane P, Boukari M, Yalo N, Azonsi F, Glidja F (2008) Groundwater quality monitoring in collaboration with rural communities in Bénin. Proceedings of the Kampala Conference Groundwater and Climate in Africa, Kampala, Uganda, 24–28 June 2008Google Scholar
  51. Thornton T, Leahy J (2012) Trust in citizen science research: a case study of groundwater education through water evaluation & testing program. J Am Water Resour Assoc 48(5):1032–1040CrossRefGoogle Scholar
  52. Ticehurst JL, Curtis AL (2018) Assessing conjunctive use opportunities with stakeholders in Australia’s Murray-Darling basin. J Water Resour Plan Manage WRENG-337IR2Google Scholar
  53. Todd A (2011) Groundwater investigation, Tamborine Mountain, South East Queensland. Institute for Sustainable Resources, Queensland University of Technology. Technical report to South East Queensland Catchments Ltd. http://www.tamborinemtnlandcare.org.au/downloads/Tamborine_Mt_report.pdf. Accessed 28 Oct 2019
  54. Witt K, Kelemen S, Schultz H, Vivoda V (2018) Industry and government responses to unconventional gas development in Australia. Extract Indust Soc 5(4):422–426CrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • Michael Jamieson
    • 1
    Email author
  • Mabbie Elson
    • 1
  • Ross Carruthers
    • 1
  • Carlos Miraldo Ordens
    • 2
  1. 1.Department of Natural Resources, Mines and Energy, QueenslandBrisbane and ToowoombaAustralia
  2. 2.Centre for Water in the Minerals Industry, Sustainable Minerals InstituteThe University of Queensland, St LuciaBrisbaneAustralia

Personalised recommendations